Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
ЦИАНОКОБАЛАМИН-СВЯЗЫВАЮЩИЙ БЕЛОК ТЕРМОФИЛЬНОГО МИКРООРГАНИЗМА
1. Kräutler, B. (2012) Biochemistry of B12-Cofactors in Human Metabolism. in Water Soluble Vitamins (Stanger, O. ed.), Springer Netherlands, Dordrecht. pp 323-346
2. Froese, D. S., Fowler, B., and Baumgartner, M. R. (2019) Vitamin B12, folate, and the methionine remethylation cycle—biochemistry, pathways, and regulation, J of Inher Metab Disea, 42, 673-685, doi: 10.1002/jimd.12009.
3. Halczuk, K., Kaźmierczak-Barańska, J., Karwowski, B. T., Karmańska, A., and Cieślak, M. (2023) Vitamin B12—Multifaceted In Vivo Functions and In Vitro Applications, Nutrients, 15, 2734, doi: 10.3390/nu15122734.
4. Guéant, J.-L., Caillerez-Fofou, M., Battaglia-Hsu, S., Alberto, J.-M., Freund, J.-N., Dulluc, I., Adjalla, C., Maury, F., Merle, C., Nicolas, J.-P., Namour, F., and Daval, J.-L. (2013) Molecular and cellular effects of vitamin B12 in brain, myocardium and liver through its role as co-factor of methionine synthase, Biochimie, 95, 1033-1040, doi: 10.1016/j.biochi.2013.01.020.
5. Li, F., Liu, P., Mi, W., Li, L., Anderson, N. M., Lesner, N. P., Burrows, M., Plesset, J., Majer, A., Wang, G., Li, J., Zhu, L., Keith, B., and Simon, M. C. (2024) Blocking methionine catabolism induces senescence and confers vulnerability to GSK3 inhibition in liver cancer, Nat Cancer, 5, 131-146, doi: 10.1038/s43018-023-00671-3.
6. Obeid, R., Fedosov, S. N., and Nexo, E. (2015) Cobalamin coenzyme forms are not likely to be superior to cyano‐ and hydroxyl‐cobalamin in prevention or treatment of cobalamin deficiency, Molecular Nutrition Food Res, 59, 1364-1372, doi: 10.1002/mnfr.201500019.
7. Hannibal, L., Kim, J., Brasch, N. E., Wang, S., Rosenblatt, D. S., Banerjee, R., and Jacobsen, D. W. (2009) Processing of alkylcobalamins in mammalian cells: A role for the MMACHC (cblC) gene product, Molecular Genetics and Metabolism, 97, 260-266, doi: 10.1016/j.ymgme.2009.04.005.
8. Harrington, D. J. (2017) Laboratory assessment of vitamin B12 status, J Clin Pathol, 70, 168-173, doi: 10.1136/jclinpath-2015-203502.
9. Zhang, Y., Hodgson, N. W., Trivedi, M. S., Abdolmaleky, H. M., Fournier, M., Cuenod, M., Do, K. Q., and Deth, R. C. (2016) Decreased Brain Levels of Vitamin B12 in Aging, Autism and Schizophrenia, PLoS ONE, 11, e0146797, doi: 10.1371/journal.pone.0146797.
10. Hirsch, S., Ronco, A. M., Guerrero-Bosagna, C., De La Maza, M. P., Leiva, L., Barrera, G., Llanos, M., Alliende, M. A., Silva, F., and Bunout, D. (2008) Methylation status in healthy subjects with normal and high serum folate concentration, Nutrition, 24, 1103-1109, doi: 10.1016/j.nut.2008.05.018.
11. Stabler, S. P., Allen, R. H., Dolce, E. T., and Johnson, M. A. (2006) Elevated serum S-adenosylhomocysteine in cobalamin-deficient elderly and response to treatment, The American Journal of Clinical Nutrition, 84, 1422-1429, doi: 10.1093/ajcn/84.6.1422
12. Banerjee, R. V., and Matthews, R. G. (1990) Cobalamin‐dependent methionine synthase, FASEB j., 4, 1450-1459, doi: 10.1096/fasebj.4.5.2407589.
13. Duthie, S. J., Narayanan, S., Brand, G. M., Pirie, L., and Grant, G. (2002) Impact of Folate Deficiency on DNA Stability, The Journal of Nutrition, 132, 2444S-2449S, doi: 10.1093/jn/132.8.2444S.
14. Maeder, M. L., and Gersbach, C. A. (2016) Genome-editing Technologies for Gene and Cell Therapy, Molecular Therapy, 24, 430-446, doi: 10.1038/mt.2016.10.
15. Kovatcheva, M., Melendez, E., Chondronasiou, D., Pietrocola, F., Bernad, R., Caballe, A., Junza, A., Capellades, J., Holguín-Horcajo, A., Prats, N., Durand, S., Rovira, M., Yanes, O., Stephan-Otto Attolini, C., Kroemer, G., and Serrano, M. (2023) Vitamin B12 is a limiting factor for induced cellular plasticity and tissue repair, Nat Metab, 5, 1911-1930, doi: 10.1038/s42255-023-00916-6.
16. Macip, C. C., Hasan, R., Hoznek, V., Kim, J., Lu, Y. R., Metzger, L. E., Sethna, S., and Davidsohn, N. (2024) Gene Therapy-Mediated Partial Reprogramming Extends Lifespan and Reverses Age-Related Changes in Aged Mice, Cellular Reprogramming, 26, 24-32, doi: 10.1089/cell.2023.0072.
17. Ferrari, G., Thrasher, A. J., and Aiuti, A. (2021) Gene therapy using haematopoietic stem and progenitor cells, Nat Rev Genet, 22, 216-234, doi: 10.1038/s41576-020-00298-5.
18. Přibylová, A., Fischer, L., Pyott, D. E., Bassett, A., and Molnar, A. (2022) DNA methylation can alter CRISPR/Cas9 editing frequency and DNA repair outcome in a target‐specific manner, New Phytologist, 235, 2285-2299, doi: 10.1111/nph.18212.
19. Hinz, J. M., Laughery, M. F., and Wyrick, J. J. (2015) Nucleosomes Inhibit Cas9 Endonuclease Activity in Vitro, Biochemistry, 54, 7063-7066, doi: 10.1021/acs.biochem.5b01108.
20. Yarrington, R. M., Verma, S., Schwartz, S., Trautman, J. K., and Carroll, D. (2018) Nucleosomes inhibit target cleavage by CRISPR-Cas9 in vivo, Proc. Natl. Acad. Sci. U.S.A., 115, 9351-9358, doi: 10.1073/pnas.1810062115.
21. Chen, X., Rinsma, M., Janssen, J. M., Liu, J., Maggio, I., and Gonçalves, M. A. F. V. (2016) Probing the impact of chromatin conformation on genome editing tools, Nucleic Acids Research, 44, 6482-6492, doi: 10.1093/nar/gkw524.
22. Ahmad, M., Mohsin, M., Iqrar, S., Manzoor, O., Siddiqi, T. O., and Ahmad, A. (2018) Live cell imaging of vitamin B12 dynamics by genetically encoded fluorescent nanosensor, Sensors and Actuators B: Chemical, 257, 866-874, doi: 10.1016/j.snb.2017.11.030.
23. Soleja, N., Agrawal, N., Nazir, R., Ahmad, M., and Mohsin, M. (2020) Enhanced sensitivity and detection range of FRET-based vitamin B12 nanosensor, 3 Biotech, 10, 87, doi: 10.1007/s13205-020-2073-1.
24. Donaldson, T., Iozzino, L., Deacon, L. J., Billones, H., Ausili, A., D'Auria, S., and Dattelbaum, J. D. (2017) Engineering a switch-based biosensor for arginine using a Thermotoga maritima periplasmic binding protein, Analytical Biochemistry, 525, 60-66, doi: 10.1016/j.ab.2017.02.021.
25. Edwards, K. A. (2021) Periplasmic-binding protein-based biosensors and bioanalytical assay platforms: Advances, considerations, and strategies for optimal utility, Talanta Open, 3, 100038, doi: 10.1016/j.talo.2021.100038.
26. Scheepers, G. H., Lycklama A Nijeholt, J. A., and Poolman, B. (2016) An updated structural classification of substrate‐binding proteins, FEBS Letters, 590, 4393-4401, doi: 10.1002/1873-3468.12445.
27. Blum, M., Andreeva, A., Florentino, Laise C., Chuguransky, Sara R., Grego, T., Hobbs, E., Pinto, Beatriz L., Orr, A., Paysan-Lafosse, T., Ponamareva, I., Salazar, Gustavo A., Bordin, N., Bork, P., Bridge, A., Colwell, L., Gough, J., Haft, Daniel H., Letunic, I., Llinares-López, F., Marchler-Bauer, A., et al. (2025) InterPro: the protein sequence classification resource in 2025, Nucleic Acids Research, 53, D444-D456, doi: 10.1093/nar/gkae1082.
28. Sigrist, C. J. A., De Castro, E., Cerutti, L., Cuche, B. A., Hulo, N., Bridge, A., Bougueleret, L., and Xenarios, I. (2012) New and continuing developments at PROSITE, Nucleic Acids Research, 41, D344-D347, doi: 10.1093/nar/gks1067.
29. Thomas, P. D., Ebert, D., Muruganujan, A., Mushayahama, T., Albou, L. P., and Mi, H. (2022) PANTHER: Making genome‐scale phylogenetics accessible to all, Protein Science, 31, 8-22, doi: 10.1002/pro.4218.
30. Hirokawa, T., Boon-Chieng, S., and Mitaku, S. (1998) SOSUI: classification and secondary structure prediction system for membrane proteins, Bioinformatics, 14, 378-379, doi: 10.1093/bioinformatics/14.4.378.
31. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2007) Clustal W and Clustal X version 2.0, Bioinformatics, 23, 2947-2948, doi: 10.1093/bioinformatics/btm404.
32. Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M., and Barton, G. J. (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench, Bioinformatics, 25, 1189-1191, doi: 10.1093/bioinformatics/btp033.
33. Kochetkova, T. V., Kublanov, I. V., Toshchakov, S. V., Osburn, M. R., Novikov, A. A., Bonch-Osmolovskaya, E. A., and Perevalova, A. A. (2016) Thermogladius calderae gen. nov., sp. nov., an anaerobic, hyperthermophilic crenarchaeote from a Kamchatka hot spring, International Journal of Systematic and Evolutionary Microbiology, 66, 1407-1412, doi: 10.1099/ijsem.0.000916.
34. Podosokorskaya, O. A., Merkel, A. Y., Kolganova, T. V., Chernyh, N. A., Miroshnichenko, M. L., Bonch-Osmolovskaya, E. A., and Kublanov, I. V. (2011) Fervidobacterium riparium sp. nov., a thermophilic anaerobic cellulolytic bacterium isolated from a hot spring, International Journal of Systematic and Evolutionary Microbiology, 61, 2697-2701, doi: 10.1099/ijs.0.026070-0.
35. Karpowich, N. K., Huang, H. H., Smith, P. C., and Hunt, J. F. (2003) Crystal Structures of the BtuF Periplasmic-binding Protein for Vitamin B12 Suggest a Functionally Important Reduction in Protein Mobility upon Ligand Binding, Journal of Biological Chemistry, 278, 8429-8434, doi: 10.1074/jbc.M212239200.
36. Borths, E. L., Locher, K. P., Lee, A. T., and Rees, D. C. (2002) The structure of Escherichia coli BtuF and binding to its cognate ATP binding cassette transporter, Proc. Natl. Acad. Sci. U.S.A., 99, 16642-16647, doi: 10.1073/pnas.262659699.
37. Nishida, Y., Kayama, K., Endoh, T., Hanazono, K., Camer, G. A., and Endoh, D. (2023) PCR-Based Gene Synthesis with Overlapping Unisense-Oligomers Asymmetric Extension Supported by a Simulator for Oligonucleotide Extension Achieved 1 kbp dsDNA, BioTechniques, 74, 317-332, doi: 10.2144/btn-2022-0127.
38. Черных, М. А., Кульдюшев, Н. А., Пеньёр, С., Беркут, А. А., Титгат, Я., Ефремов, Р. Г., Василевский, А. А., and Чугунов, А. О. (2021) Производное нейротоксина скорпиона BeM9, селективное в отношении потенциал-чувствительных натриевых каналов насекомых, Биоорган. химия, 47, 495-505, doi: 10.31857/S0132342321040060.
39. Wilkins, M. R., Gasteiger, E., Bairoch, A., Sanchez, J.-C., Williams, K. L., Appel, R. D., and Hochstrasser, D. F. (1998) Protein Identification and Analysis Tools in the ExPASy Server. in 2-D Proteome Analysis Protocols, Humana Press, New Jersey. pp 531-552
40. Dhimolea, E. (2010) Canakinumab, mAbs, 2, 3-13, doi: 10.4161/mabs.2.1.10328.
41. Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., and Sayers, E. W. (2016) GenBank, Nucleic Acids Research, 44, D67-D72, doi: 10.1093/nar/gkv1276.
42. Chen, P., Wolf, W. R., Castanheira, I., and Sanches-Silva, A. (2010) A LC/UV/Vis method for determination of cyanocobalamin (VB12) in multivitamin dietary supplements with on-line sample clean-up, Anal. Methods, 2, 1171, doi: 10.1039/c0ay00177e.
43. Butzin, N. C., Secinaro, M. A., Swithers, K. S., Gogarten, J. P., and Noll, K. M. (2013) Thermotoga lettingae Can Salvage Cobinamide To Synthesize Vitamin B12, Appl Environ Microbiol, 79, 7006-7012, doi: 10.1128/AEM.01800-13.
44. Krams, C., Esser, A. J., Klenzendorf, M., Klotz, K., Spiekerkoetter, U., Jacobsen, D. W., Smith, C. A., Maggiolo, A. O., and Hannibal, L. (2024) The cobalamin processing enzyme of Trichoplax adhaerens, Journal of Biological Chemistry, 108089, doi: 10.1016/j.jbc.2024.108089.
45. Chino, S., Sakaguchi, A., Yamoto, R., Ferri, S., and Sode, K. (2007) Branched-chain Amino Acid Biosensing Using Fluorescent Modified Engineered Leucine/Isoleucine/Valine Binding Protein, IJMS, 8, 513-525, doi: 10.3390/i8060513.
46. Nasu, Y., Murphy-Royal, C., Wen, Y., Haidey, J. N., Molina, R. S., Aggarwal, A., Zhang, S., Kamijo, Y., Paquet, M.-E., Podgorski, K., Drobizhev, M., Bains, J. S., Lemieux, M. J., Gordon, G. R., and Campbell, R. E. (2021) A genetically encoded fluorescent biosensor for extracellular L-lactate, Nat Commun, 12, 7058, doi: 10.1038/s41467-021-27332-2.
47. Nijland, M., Lefebvre, S. N., Thangaratnarajah, C., and Slotboom, D. J. (2024) Bidirectional ATP-driven transport of cobalamin by the mycobacterial ABC transporter BacA, Nat Commun, 15, 2626, doi: 10.1038/s41467-024-46917-1.
48. Kruglikov, A., Wei, Y., and Xia, X. (2022) Proteins from Thermophilic Thermus thermophilus Often Do Not Fold Correctly in a Mesophilic Expression System Such as Escherichia coli, ACS Omega, 7, 37797-37806, doi: 10.1021/acsomega.2c04786.
49. Wang, Y., and Zhang, Y. H. P. (2009) Overexpression and simple purification of the Thermotoga maritima 6-phosphogluconate dehydrogenase in Escherichia coli and its application for NADPH regeneration, Microb Cell Fact, 8, 30, doi: 10.1186/1475-2859-8-30.
50. Cadieux, N., Bradbeer, C., Reeger-Schneider, E., Köster, W., Mohanty, A. K., Wiener, M. C., and Kadner, R. J. (2002) Identification of the Periplasmic Cobalamin-Binding Protein BtuF of Escherichia coli, J Bacteriol, 184, 706-717, doi: 10.1128/JB.184.3.706-717.2002.
51. Mireku, S. A., Ruetz, M., Zhou, T., Korkhov, V. M., Kräutler, B., and Locher, K. P. (2017) Conformational Change of a Tryptophan Residue in BtuF Facilitates Binding and Transport of Cobinamide by the Vitamin B12 Transporter BtuCD-F, Sci Rep, 7, 41575, doi: 10.1038/srep41575.
52. Boachie, J., Adaikalakoteswari, A., Goljan, I., Samavat, J., Cagampang, F. R., and Saravanan, P. (2021) Intracellular and Tissue Levels of Vitamin B12 in Hepatocytes Are Modulated by CD320 Receptor and TCN2 Transporter, IJMS, 22, 3089, doi: 10.3390/ijms22063089.
53. Battaglia-Hsu, S.-f., Akchiche, N., Noel, N., Alberto, J.-M., Jeannesson, E., Orozco-Barrios, C. E., Martinez-Fong, D., Daval, J.-L., and Guéant, J.-L. (2009) Vitamin B12 deficiency reduces proliferation and promotes differentiation of neuroblastoma cells and up-regulates PP2A, proNGF, and TACE, Proc. Natl. Acad. Sci. U.S.A., 106, 21930-21935, doi: 10.1073/pnas.0811794106.
54. Guéant, J.-L., Guéant-Rodriguez, R.-M., Kosgei, V. J., and Coelho, D. (2022) Causes and consequences of impaired methionine synthase activity in acquired and inherited disorders of vitamin B12 metabolism, Critical Reviews in Biochemistry and Molecular Biology, 57, 133-155, doi: 10.1080/10409238.2021.1979459.
55. Smith, D. (2023) Folate and Folic Acid Metabolism: A Significant Nutrient-Gene-Environment Interaction, MRAJ, 11, doi: 10.18103/mra.v11i5.3824.