Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Generalization of Euler’s formula for adjacent polyhedra
2025-07-02
Euler's formula for polyhedra is one of the most famous mathematical results. It is also widely used outside mathematics. In particular, it is used in the analysis of molecular structures, many of which have a polyhedral shape. Generalizations of Euler's formula for non-simply connected and multidimensional polyhedra are well known. This article presents a generalization of Euler's formula for adjacent polyhedra. Various cases of adjacency are considered: face-sharing, edge-sharing and vertex-sharing connections. For a system of adjacent polyhedra, a single formula relates the number of vertices, edges and faces in the form V – E + F = N + 1, where N is the number of polyhedra.
Ссылка для цитирования:
Киров М. В. 2025. Generalization of Euler’s formula for adjacent polyhedra. PREPRINTS.RU. https://doi.org/10.24108/preprints-3113614
Список литературы
1. Hilbert, D., Cohn-Vossen, S.: Geometry and the imagination. 2nd Edn. AMS Chelsey Publishing (1999).
2. Harary, F., Manvel, B.: On the Number of Cycles in a Graph, Mat. Cas. 21, 55–63 (1971).
3. Chang, Y.C., Fu, H.L.: The number of 6-cycles in a graph, Bull. Inst. Combin. Appl. 39, 27–30 (2003).
4. Movarraei, N., Boxwala, S: On the Number of Cycles in a Graph, Open J. Discrete Math. 6, 41–69 (2016). doi: 10.4236/ojdm.2016.62005.
5. Kirov, M.V.: Edge-sharing water prisms. Phys. Chem. Chem. Phys. 26, 17777–84 (2024). doi:10.1039/d4cp00745j.
6. Born, M., Wolf, E.: Principles of optics, 7th Edn. Pergamon Press (1999).
7. Kirov, M.V.: Nanostructural approach to proton ordering in gas hydrate cages. J. Struct. Chem. 44, 420–428 (2003). doi:10.1023/B:JORY.0000009669.81917.29.