Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers
1. Oresme, N. (1350). De proportionibus proportionum. Paris.
2. Gowers, T. (2008). The Princeton Companion to Mathematics. Princeton University Press.
3. Grant, E. (1974). A Source Book in Medieval Science. Harvard University Press.
4. Horadam, A. F. (1965). Basic properties of a certain generalized sequence of numbers, The Fibonacci Quarterly, 3(3), 161-176. https://doi.org/10.1080/00150517.1965.12431416
5. Cerda Morales, G. (2019). Oresme polynomials and their derivatives. https://doi.org/10.48550/arXiv.1904.01165
6. Mangueira, M. C. dos S., Vieira, R. P. M., Alves, F. R. V., & Catarino, P. M. M. (2021). The Oresme sequence: The generalization of its matrix form and its hybridization process. Notes on Number Theory and Discrete Mathematics, 27(1), 101-111. https://doi.org/10.7546/nntdm.2021.27.1.101-111
7. Halıcı, S., & Sayın, E. (2025). On some k- Oresme hybrid numbers including negative indices. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 74(1), 17-26. https://doi.org/10.31801/cfsuasmas.1369953
8. Boyer, C. B., & Merzbach, U. C. (2011). A history of mathematics (3rd ed.). John Wiley & Sons.
9. Heath, T. L. (1981). A history of Greek mathematics, Volume 1: From Thales to Euclid. Dover Publications.
10. Livio, M. (2002). The golden ratio: The story of Phi, the world's most astonishing number. Broadway Books.
11. O'Connor, J. J., & Robertson, E. F. (1996). Nicole Oresme. MacTutor History of Mathematics archive, University of St Andrews. https://mathshistory.st-andrews.ac.uk/Biographies/Oresme/
12. Diacu, F., & Holmes, P. (1996). Celestial encounters: The origins of chaos and stability. Princeton University Press.
13. May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature, 261(5560), 459–467. https://doi.org/10.1038/261459a0
14. Mandelbrot, B. B. (1982). The fractal geometry of nature. W. H. Freeman.
15. Stewart, J. (2015). Calculus: Early Transcendentals (8th ed.). Cengage Learning.
16. Keçeci, M. (2025, May 11). Keçeci numbers and the Keçeci prime number: A potential number theoretic exploratory tool. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15381697
17. Keçeci, M. (2025). Diversity of Keçeci numbers and their application to Prešić-type fixed-point iterations: A numerical exploration. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15481711
18. Keçeci, M. (2025, May 10). Kececinumbers. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15377659 (Kütüphanenin varlığı ve genel tanım için [4]'e atıf)
19. Keçeci, M. (2024). kececinumbers [Computer software]. GitHub. https://github.com/WhiteSymmetry/kececinumbers
20. Keçeci, M. (2024). kececinumbers (Version 0.1.5) [Computer software]. Anaconda. https://anaconda.org/bilgi/kececinumbers
21. Feller, W. (1968). An introduction to probability theory and its applications (Vol. 1, 3rd ed.). John Wiley & Sons.
22. Sedgewick, R., & Flajolet, P. (2013). An introduction to the analysis of algorithms (2nd ed.). Addison-Wesley Professional.
23. Katz, J., & Lindell, Y. (2014). Introduction to modern cryptography (2nd ed.). Chapman and Hall/CRC.
24. Keçeci, M. (2025). Weyl Semimetals: Unveiling Novel Electronic Structures and Topological Properties. WorkflowHub. https://doi.org/10.48546/workflowhub.document.35.3
25. Keçeci, M. (2025). Nodal-line semimetals: A geometric advantage in quantum information. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15455271
26. Keçeci, M. (2025). Exploring Weyl Semimetals: Emergence of Exotic Electrons and Topological Order. HAL open science. https://hal.science/hal-05146435
27. Keçeci, M. (2025). From Weyl Fermions to Topological Matter: The Physics of Weyl Semimetals. Knowledge Commons. https://doi.org/10.17613/p79v7-kje79
28. Keçeci, M. (2025). Harnessing Geometry for Quantum Computation: Lessons from Nodal-Line Materials. Knowledge Commons. https://doi.org/10.17613/w6vmd-4vb84
29. Keçeci, M. (2025). Quantum Information at the Edge: Topological Opportunities in Nodal-Line Materials. figshare. https://doi.org/10.6084/m9.figshare.29484947
30. Keçeci, M. (2025). The Keçeci Layout: A Cross-Disciplinary Graphical Framework for Structural Analysis of Ordered Systems. Authorea. https://doi.org/10.22541/au.175156702.26421899/v1
31. Keçeci, M. (2025). The Keçeci Layout: A Structural Approach for Interdisciplinary Scientific Analysis. figshare. https://doi.org/10.6084/m9.figshare.29468135
32. Keçeci, M. (2025). Beyond Topology: Deterministic and Order-Preserving Graph Visualization with the Keçeci Layout. WorkflowHub. https://doi.org/10.48546/workflowhub.document.34.4
33. Keçeci, M. (2025). Keçeci Deterministic Zigzag Layout. WorkflowHub. https://doi.org/10.48546/workflowhub.document.31.1
34. Keçeci, M. (2025). Keçeci's Arithmetical Square. Authorea. https://doi.org/10.22541/au.175070836.63624913/v1
35. Keçeci, M. (2025). Scalable Complexity in Fractal Geometry: The Keçeci Fractal Approach. Authorea. https://doi.org/10.22541/au.175131225.56823239/v1
36. Keçeci, M. (2025). Keçeci Fractals. WorkflowHub. https://doi.org/10.48546/workflowhub.document.32.2
37. Keçeci, M. (2025). Accuracy, Noise, and Scalability in Quantum Computation: Strategies for the NISQ Era and Beyond. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15515113
38. Keçeci, M. (2025). Yüksek Kübit Sayılı Kuantum Hesaplamada Ölçeklenebilirlik ve Hata Yönetimi: Yüzey Kodları, Topolojik Malzemeler ve Hibrit Algoritmik Yaklaşımlar. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15558153
39. Keçeci, M. (2025). Quantum Error Correction Codes and Their Impact on Scalable Quantum Computation: Current Approaches and Future Perspectives. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15499657
40. Keçeci, M. (2025). Kuantum Hata Düzeltmede Metrik Seçimi ve Algoritmik Optimizasyonun Büyük Ölçekli Yüzey Kodları Üzerindeki Etkileri. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15572200
41. Keçeci, M. (2025). Künneth Teoremi Bağlamında Özdevinimli ve Evrişimli Kuantum Algoritmalarında Yapay Zekâ Entegrasyonu ile Hata Minimizasyonu. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15540875
42. Keçeci, M. (2025). Keçeci Numbers and the Keçeci Prime Number. Authorea. https://doi.org/10.22541/au.174890181.14730464/v1
43. https://github.com/WhiteSymmetry/Oresme
44. Keçeci, M. (2025). Oresme (0.1.0). Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15833238
45. https://pypi.org/project/oresme
46. https://anaconda.org/bilgi/oresme
47. Keçeci, M. (2025). Exploring Weyl Semimetals: Emergence of Exotic Electrons and Topological Order. HAL open science. https://hal.science/hal-05146435; https://doi.org/10.13140/RG.2.2.35594.17606
48. Keçeci, M. (2025). Nodal-Line Semimetals: Unlocking Geometric Potential in Quantum Information. WorkflowHub. https://doi.org/10.48546/workflowhub.document.36.1
49. Keçeci, M. (2025). Weyl Semimetals and Their Unique Electronic and Topological Characteristics. figshare. https://doi.org/10.6084/m9.figshare.29483816
50. Keçeci, M. (2025). When Nodes Have an Order: The Keçeci Layout for Structured System Visualization. HAL open science. https://hal.science/hal-05143155; https://doi.org/10.13140/RG.2.2.19098.76484
51. Keçeci, M. (2025). Beyond Traditional Diagrams: The Keçeci Layout for Structural Thinking. Knowledge Commons. https://doi.org/10.17613/v4w94-ak572
52. Keçeci, M. (2025, July 3). The Keçeci Layout: A Structural Approach for Interdisciplinary Scientific Analysis. OSF. https://doi.org/10.17605/OSF.IO/9HTG3
53. Keçeci, M. (2025). The Keçeci Layout: A Structural Approach for Interdisciplinary Scientific Analysis. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15792684
54. Keçeci, M. (2025). Technical and Theoretical Bridges Between Gravitational Wave Observations and Quantum Information Processing Systems. Authorea. July, 2025. https://doi.org/10.22541/au.175138854.46819184/v1
55. Keçeci, M. (2025). New Technological and Methodological Approaches in Gravitational Wave Detection and Quantum Computing Development. WorkflowHub. https://doi.org/10.48546/workflowhub.document.33.1
56. Veliev, E. V., Günaydın, S., & Sundu, H. (2018). Thermal properties of the exotic X(3872) state via QCD sum rule. The European Physical Journal Plus, 133(3), 139. https://doi.org/10.1140/epjp/i2018-11977-0
57. Yıldız, F., Przybylski, M., & Kirschner, J. (2009). Direct evidence of a nonorthogonal magnetization configuration in single crystalline Fe₁₋ₓCoₓ/Rh/Fe/Rh(001) system. Physical Review Letters, 103(14), 147203. https://doi.org/10.1103/PhysRevLett.103.147203
58. Yalçın, O., et al. (2023). Crystallographic, structural, optical, and dielectric properties of aniline and aniline halide imprinted hydrogels for optoelectronic applications. Journal of Materials Science: Materials in Electronics, 34(22). https://doi.org/10.1007/s10854-023-10915-8
59. Mikailzade, F., Maksutoglu, M., Khaibullin, R.I., Valeev, V.F., Nuzhdin, V.I., Aliyeva, V.B., & Mammadov, T.G. (2016). Magnetodielectric Effects in Co-implanted TlInS₂ and TlGaSe₂ Crystals. Phase Transitions, 89(6), 568–577. https://doi.org/10.1080/01411594.2015.1080259
60. Garrett, J., Luis, E., Peng, H.-H., Cera, T., Gobinathj, Borrow, J., Keçeci, M., Splines, Iyer, S., Liu, Y., cjw, & Gasanov, M. (2023). garrettj403/SciencePlots: 2.1.1 (2.1.1). Zenodo. https://doi.org/10.5281/zenodo.10206719
61. Rameev, B. (2020). Magnetic Resonance and Microwave Techniques for Security Applications. 2019 Photonics & Electromagnetics Research Symposium-Spring (PIERS-Spring). https://doi.org/10.1109/PIERS-Spring46901.2019.9017563
62. Yaman, M., Misir, Z. Finite-Time Behaviour of Solutions to Nonlinear Parabolic equation. New Trends in Mathematical Sciences, 2022, Vol. 10, no. 4, pp. 47–53. https://doi.org/10.20852/ntmsci.2022.487
63. Bidai, K., Tabeti, A., Mohammed, D. S., Seddik, T., Batouche, M., Özdemir, M., & Bakhti, B. (2020). Carbon substitution enhanced electronic and optical properties of MgSiP₂ chalcopyrite through TB-mBJ approximation. Computational Condensed Matter, 24, e00490. https://doi.org/10.1016/j.cocom.2020.e00490
64. Keçeci, M. (2025). A Graph-Theoretic Perspective on the Keçeci Layout: Structuring Cross-Disciplinary Inquiry. Preprints. https://doi.org/10.20944/preprints202507.0589
65. Keçeci, M. (2025). Oresme. figshare. https://doi.org/10.6084/m9.figshare.29504708
66. Keçeci, M. (2025). Oresme [Data set]. WorkflowHub. https://doi.org/10.48546/workflowhub.datafile.18.1
67. Keçeci, M. (2025). Dynamic vs Static Number Sequences: The Case of Keçeci and Oresme Numbers. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15833351
68. Keçeci, M. (2025). Variability and Stability in Number Sequences: An Analysis of Keçeci and Oresme Numbers. WorkflowHub. https://doi.org/10.48546/workflowhub.document.37.1
69. Keçeci, Mehmet (2025). Dynamic-Static Properties of Keçeci and Oresme Number Sequences: A Comparative Examination. figshare. Journal contribution. https://doi.org/10.6084/m9.figshare.29504960
70. Keçeci, Mehmet (2025). Dynamic and Static Approaches in Mathematics: Investigating Keçeci and Oresme Sequences. Knowledge Commons. https://doi.org/10.17613/gbdgx-d8y63
71. Keçeci, M. (2025). Characteristic Features of Keçeci and Oresme Number Sequences: Dynamic and Static Perspectives. HAL open science.
72. Keçeci, M. (2025). Geometric Resilience in Quantum Systems: The Case of Nodal-Line Semimetals. Authorea. Authorea. https://doi.org/10.22541/au.175192307.76278430/v1
73. Keçeci, M. (2025). The Rise of Weyl Semimetals: Exotic States and Topological Transitions. Authorea. https://doi.org/10.22541/au.175192231.19609379/v1
74. Keçeci, M. (2025). Analysing the Dynamic and Static Structures of Keçeci and Oresme Sequences. Authorea.
75. Keçeci, M. (2025). Mobility and Constancy in Mathematical Sequences: A Study on Keçeci and Oresme Numbers. OSF. https://doi.org/10.17605/osf.io/68r4v
76. Keçeci, M. (2025). Analysing the Dynamic and Static Structures of Keçeci and Oresme Sequences. Authorea. https://doi.org/10.22541/au.175199926.64529709/v1
77. Keçeci, M. (2025). Dynamic Sequences Versus Static Sequences: Keçeci and Oresme Numbers in Focus. Preprints. https://doi.org/10.20944/preprints202507.0781