Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Обобщенная алгебра Клиффорда – универсальный инструмент описания и объединения фундаментальных полей
This article presents an overview of the construction of Clifford algebra in pseudo-Riemannian space R1,3 for describing and unifying fundamental fields: gravitational, electromagnetic, and Dirac fields. The quadratic differential form ∇A = ∇•A + ∇∧A was defined as a measure of the local inhomogeneity of a vector field in R1,3. Instead of the classical scalar and vector products in ∇A, the Clifford product was used: the inner ∇•A and outer ∇∧A ones. In addition, instead of the orthonormal basis in the Minkowski space (E1,3) {t,x,y.z}, the so-called canonical basis, composed of the Dirac matrices {γ0, γ1,γ2,γ3}, was used, which significantly expanded the meaning and capabilities of the classical basis. The associativity property of the product ∇∇A = (∇∇A) = ∇(∇A) made it possible to obtain the following: a) the Einstein equation from (∇∇A); and b) the Maxwell equation from ∇(∇A). Simultaneously, two independent Maxwell systems were combined into a single equation too. Transforming ∇A into a sum of three independent biquaternions ∇A = Σαℬα (α = 1,2,3) allowed us to obtain bispinors (antibispinors), rotations on the spatial and temporal planes in R1,3, and representation functions and generators of the Lorentz group in R1,3. The gradient of the bispinors allowed us to derive three pairs of Dirac-type equations for the three generations of fermions and bosons. Transformations of vectors using generalized biquaternions (x′ = ℬα•x•ℬ̃̃α), or more precisely, Lorentz transformations in curvilinear coordinates, led to the universal form of the Doppler law. The approximation function of the proposed nonlinear Hubble law was calculated from experimental data on the dependence of the redshift on the distance to the observed stars. This nonlinearity of the Hubble law explains the mechanism for the accelerated increase in redshift for the steady-state model without the Big Bang.
В статье представлен обзор конструкции алгебры Клиффорда в псевдоримановом пространстве R1,3 для описания и объединения фундаментальных полей: гравитационного, электромагнитного и поля Дирака. Квадратичная дифференциальная форма ∇A = ∇•A + ∇∧A была определена как мера локальной неоднородности векторного поля в R1,3. В ∇A вместо классических скалярных и векторных произведений было применено произведение Клиффорда: внутреннее ∇•A и внешнее ∇∧A. Также вместо ортонормированного базиса в пространстве Минковского (E1,3) {t,x,y.z} был использован, так называемый, канонический базис, составленный из матриц Дирака {γ0, γ1,γ2,γ3}, что значительно расширяет смысл и возможности классического базиса. Свойство ассоциативности произведения ∇∇A = (∇∇A) = ∇(∇A) позволило получить: а) уравнение Эйнштейна из (∇∇A); б) уравнение Максвелла из ∇(∇A). При этом две независимые системы Максвелла также объединились в единое уравнение. Преобразование ∇A как сумма трёх независимых бикватернионов ∇A = Σαℬα (α = 1,2,3) позволило получить биспиноры (антибиспиноры), повороты на пространственных и временных плоскостях в R1,3, а также функции представления и генераторы группы Лоренца в R1,3. Градиент биспиноров позволил вывести три пары уравнений типа Дирака для трёх поколений фермионов и бозонов. Преобразования векторов с помощью обобщенных бикватернионов (x′ = ℬα•x•ℬ̃̃α), а точнее, преобразования Лоренца в криволинейных координатах привели к универсальному виду закона Доплера. Аппроксимирующая функция предполагаемого нелинейного закона Хаббла была вычислена из экспериментальных данных по измерению зависимости красного смещения от расстояния до наблюдаемых звезд. Эта нелинейность закона Хаббла объясняет механизм ускоренного увеличения красного смещения для модели Стационарной Вселенной без модели «Большого Взрыва»
1. Biquaternion Wikipedia. https://en.wikipedia.org/wiki/Biquaternion
2. Pseudo-Riemannian manifold. Wikipedia. https://en.wikipedia.org/wiki/Pseudo-Riemannian_manifold
3. Kronecker product. Wikipedia. https://en.wikipedia.org/wiki/Kronecker_product
4. Gamma matrices. Wikipedia. https://en.wikipedia.org/wiki/Gamma_matrices
5. Chris J. L. Doran. Geometric Algebra and its Application to Mathematical Physics.
6. Sidney Sussex College. A dissertation submitted for the degree of Doctor of Philosophy in
7. the University of Cambridge. February 1994, pages 4-6. https://doi.org/10.17863/CAM.16148
8. Nicholas Wheeler. Transformational principles latent in the theory of CLIFFORD ALGEBRAS. Reed College Physics Department October 2003. https://www.reed.edu/physics/faculty/wheeler/documents/Miscellaneous%20Math/Clifford%20Algebra.pdf
9. Hyperbolic functions. Wikipedia. https://en.wikipedia.org/wiki/Hyperbolic_functions
10. Rapidity. Wikipedia. https://en.wikipedia.org/wiki/Rapidity
11. Lorentz group. Wikipedia. https://en.wikipedia.org/wiki/Lorentz_group
12. Exponential map (Lie theory). Wikipedia. https://en.wikipedia.org/wiki/Exponential_map_(Lie_theory)
13. Ideal (ring theory). Wikipedia. https://en.wikipedia.org/wiki/Ideal_(ring_theory)
14. A. K. Babaev. Biquaternions, rotations and spinors in generalized Clifford algebras. SCI-ARTICLE.RU. № 45 (May) 2017. pp. 296-304. https://sci-article.ru/number/05_2017.pdf .(in Russian). Preprint: The inhomogeneity of a vector field as a sum of biquaternions, rotations, and spinors in a generalized Clifford algebra. https://doi.org/10.24108/preprints-3112462 . https://preprints.ru/article/766 (in English).
15. A. Kh. Babaev. Derivation of the Dirac equation from the inhomogeneity of space and solution for neutrino generations. SCI-ARTICLE.RU. №52 (December) 2017. https://sci-article.ru/number/12_2017.pdf pp. 237-244 (in Russian).
16. A. Kh. Babaev. Description of Lorentz Transformations, the Doppler Effect, Hubble's Law, and Related Phenomena in Curvilinear Coordinates by Generalized Biquaternions. American Journal of Astronomy and Astrophysics 2025, Vol. 12, No. 1, pp. 9-20. https://doi.org/10.11648/j.ajaa.20251201.1 2
17. Vector triple product. Wikipedia. https://en.wikipedia.org/wiki/Triple_product#Vector_triple_product
18. A. Kh. Babaev. The alternative formalism based on the generalized Clifford algebra. SCi-ARTICE.RU. №40 (December) 2016 pp. – 34-42 (in Russian). https://sci-article.ru/number/12_2016.pdf . Preprint: https://doi.org/10.24108/preprints-3112490 (in English).
19. Differential forms. Wikipedia. https://en.wikipedia.org/wiki/Maxwell%27s_equations
20. Four-current. Wikipedia. https://en.wikipedia.org/wiki/Four-current
21. A. Kh. Babaev. SCI-ARTICLE.RU Conservation of 4-dimensional electromagnetic current in a formalism based on Clifford algebra. №42 (February) 2017. Pp. 27-38. https://sci-article.ru/number/02_2017.pdf . Preprint: https://doi.org/10.24108/preprints-3112478 (in Russian).
22. Peter Petersen. Demystifying the curvature term in Lichnerowicz Laplacians. https://www.math.ucla.edu/~petersen/BLWformulas.pdf
23. Bochner Laplacian. https://en.wikipedia.org/wiki/Laplace_operators_in_differential_geometry
24. A. Kh. Babaev. Unification of Maxwell Systems, Einstein, and Dirac Equations in Pseudo-Riemannian Space R1,3 by Clifford Algebra. American Journal of Modern Physics (Volume 13) Issue 6). 23 November 2024 . https://www.sciencepublishinggroup.com/article/10.11648/j.ajmp.20241306.13
25. L. D. Landau, On one possibility for the polarization properties of neutrinos, “JETP”, v. 32, p. 407. (in Russian).
26. A. Kh. Babaev. Inhomogeneity of the vector field and quantum statistics of elementary particles. SCI-ARTICLE.RU №118 (June) 2023. pp. 82-86 (in Russian). https://sci-article.ru/number/06_2023.pdf
27. Landau L. D., Lifshitz E. M., The Classical Theory of Fields, Course of Theoretical Physics, vol. 2, pp. 123 – 127
28. Hubble’s law. Wikipedia. . https://en.wikipedia.org/wiki/Hubble%27s_law
29. Accelerating expansion of the universeю Wikipedia. https://en.wikipedia.org/wiki/Accelerating_expansion_of_the_universe
30. Observable universe. Wikipedia. https://en.wikipedia.org/wiki/Observable_universe#:~:text=According%20to%20calculations%2C%20the%20current,45.7%20billion%20light%2Dyears).
31. Florian Peißker, Andreas Eckart, Michal Zajaček, Basel Ali, Marzieh Parsa. S62 and S4711: Indications of a population of faint fast moving stars inside the S2 orbit -- S4711 on a 7.6 year orbit around Sgr~A* // The Astrophysical Journal. — 2020-08-11. — v. 899, Edit. 1. — S. 50. — ISSN 1538-4357. https://doi.org/10.48550/arXiv.2008.04764
32. Hubble E. (1929)."A relation between distance and radial velocity among extra-galactic nebulae". Proceedings of the National Academy of Sciences 15 (3): 168–173. DOI: 10.1073/pnas.15.3.168
33. W. L. Freedman, B. F. Madore, B. K. Gibson, L. Ferrarese, D. D. Kelson, S. Sakai, J. R. Mould, R. C. Kennicutt Jr., H. C. Ford, J. A. Graham and others, Hubble, E. (1929). "A relation between distance and radial velocity among extra-galactic nebulae". Proceedings of the National Academy of Sciences. 15 (3): 168–173. Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant, https://arxiv.org/abs/astro-ph/0012376. https://doi.org/10.48550/arXiv.astro-ph/0012376
34. Axis of evil (cosmology). Wikipedia. https://en.wikipedia.org/wiki/Axis_of_evil_(cosmology)
35. Gravitational lens. Wikipedia. https://en.wikipedia.org/wiki/Gravitational_lens
36. Polarization (cosmology). Wikipedia. https://en.wikipedia.org/wiki/Polarization_(cosmology) .