Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Cohomological Detection of Good Reduction on Tame Moduli Stacks: Nearby Cycles, $N=0$, and a Stacky Néron--Ogg--Shafarevich Criterion
1. T. Tsuji, p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Inventiones Mathematicae 137 (1999), no. 2, 233–411.
2. The Stacks Project Authors, Stacks Project, https://stacks.math.columbia.edu
3. (2025).
4. S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron Models, Springer, 1990.
5. P. Deligne and N. Katz (eds.), Groupes de monodromie en géométrie algébrique (SGA 7 I), Lecture Notes in Mathematics, vol. 288, Springer-Verlag, Berlin–Heidelberg–New York, 1972.
6. M. Artin, Some numerical criteria for contractability of curves on algebraic surfaces, American Journal of Mathematics 84 (1962), 485–496; Russian transl., Matematika 9 (1965), no. 3, 3–14 (transl. B. G. Moishezon).
7. G. Laumon and L. Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 39, Springer, 2000.
8. A. Grothendieck and J. L. Verdier (eds.), Théorie des Topos et Cohomologie Étale des Schémas (SGA 4, Tomes I–III), Lecture Notes in Mathematics, vols. 269, 270 and 305, Springer-Verlag, Berlin–Heidelberg–New York, 1972–1973.
9. Y. Laszlo and M. Olsson, The six operations for sheaves on Artin stacks I: Finite coefficients; II: Adic coefficients, Publications Mathématiques de l’IHÉS 107 (2008), 109–210.
10. M. Olsson, Sheaves on Artin stacks, Journal für die reine und angewandte Mathematik 603 (2007), 55–112.
11. G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Inventiones Mathematicae 73 (1983), 349–366.
12. J. Alper, Good moduli spaces for Artin stacks, Annales de l’Institut Fourier 63 (2013), no. 6, 2349–2402.
13. N. Katz and B. Mazur, Arithmetic Moduli of Elliptic Curves, Princeton University Press, 1985.
14. P. Deligne and L. Illusie (eds.), Groupes de monodromie en géométrie algébrique (SGA 7 II), Lecture Notes in Mathematics 340, Springer, 1973.
15. P. Deligne, La conjecture de Weil II, Publications Mathématiques de l’IHÉS 52 (1980), 137–252.
16. J.-P. Serre and J. Tate, Good reduction of abelian varieties, Annals of Mathematics (2) 88 (1968), 492–517.
17. C. Liedtke and Y. Matsumoto, Good reduction of K3 surfaces, Compositio Mathematica 154 (2018), 1–35.
18. B. Chiarellotto, C. Lazda, and C. Liedtke, A Néron–Ogg–Shafarevich criterion for K3 surfaces, Proceedings of the London Mathematical Society (3) 118 (2019), no. 6, 1385–1433.
19. T. Saito, Weight spectral sequences and independence of ℓ, Journal of the Institute of Mathematics of Jussieu 2 (2003), no. 3, 379–438.
20. D. Abramovich, M. Olsson, and A. Vistoli, Tame stacks in positive characteristic, Annales de l’Institut Fourier 58 (2008), no. 4, 1057–1091.
21. Y. Hu and J. Niu, A theory of stacks with twisted fields and resolution of moduli of genus two stable maps, arXiv preprint arXiv:2005.03384 [v3] (2025).
22. J. Alper, J. Hall, and D. Rydh, The étale local structure of algebraic stacks, arXiv preprint arXiv:1912.06162 [v4] (3 Apr 2025), 61 pp.
23. G. Faltings, p-adic Hodge theory, Journal of the American Mathematical Society 1 (1988), no. 1, 255–299.