Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Explicit Conductors and Nearby Cycles for Strictly Semistable Varieties over Local Fields
1. P. Deligne and N. Katz (eds.), Groupes de monodromie en géométrie algébrique (SGA 7 II), Lecture Notes in Mathematics 340, Springer, 1973.
2. M. Rapoport and T. Zink, Period Spaces for p-Divisible Groups, Annals of Mathematics Studies 141, Princeton University Press, Princeton, 1996.
3. T. Saito, Weight spectral sequences and independence of ℓ, Journal of the Institute of Mathematics of Jussieu 2 (2003), no. 4, 583–634.
4. P. Deligne, Le formalisme des cycles proches et des cycles évanescents (Exposé XIII), in Groupes de monodromie en géométrie algébrique (SGA 7 I), Lecture Notes in Mathematics 288, Springer, 1972, Exp. XIII.
5. M. Artin, Théorie de Picard–Lefschetz (Exposé XV), in Groupes de monodromie en géométrie algébrique (SGA 7 II), Lecture Notes in Mathematics 340, Springer, 1973, Exp. XV.
6. L. Illusie, Autour du théorème de monodromie locale, in Périodes p-adiques (Bures-sur-Yvette, 1988), Astérisque 223 (1994), 9–57.
7. M. Artin, A. Grothendieck, and J.-L. Verdier (eds.), Théorie des topos et cohomologie étale des schémas (SGA 4), Lecture Notes in Mathematics, vols. 269, 270, 305, Springer, 1972–1973.
8. A. Grothendieck (ed.), Cohomologie ℓ-adique et fonctions L (SGA 5), Lecture Notes in Mathematics 589, Springer, 1977.
9. P. Deligne and N. Katz (eds.), Groupes de monodromie en géométrie algébrique (SGA 7), Lecture Notes in Mathematics, vols. 288, 340, Springer, 1972–1973.
10. P. Deligne, La conjecture de Weil II, Publications Mathématiques de l’IHÉS 52 (1980), 137–252.
11. J. S. Milne, Étale Cohomology, Princeton Mathematical Series 33, Princeton University Press, Princeton, 1980.
12. G. Faltings, Crystalline cohomology and p-adic Galois representations, in Algebraic Analysis, Geometry, and Number Theory (Baltimore, 1988), Johns Hopkins University Press, 1989, 25–80.
13. L. Illusie and O. Gabber, Notes on vanishing cycles and the theorem of the fixed part, unpublished manuscript, circulated notes.
14. P. Deligne, Weil II: La conjecture de Weil II revisited, Publications Mathématiques de l’IHÉS 52 (1980), 137–252. [Same as no. 10, cited separately when historical context requires.]
15. T. Tsuji, p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Inventiones Mathematicae 137 (1999), no. 2, 233–411.
16. W. Nizioł, Semistable conjecture via p-adic Hodge theory, Annals of Mathematics (2) 168 (2008), no. 2, 485–545.
17. K. Fujiwara, A proof of the absolute purity conjecture (after Gabber), in Algebraic Geometry 2000, Azumino, Advanced Studies in Pure Mathematics 36, Mathematical Society of Japan, Tokyo, 2002, 153–183.
18. L. Illusie (ed.), Cohomologie ℓ-adique et cohomologie étale (SGA 4½), Lecture Notes in Mathematics 569, Springer, 1977.
19. L. Illusie, Théorie de Hodge III, Publications Mathématiques de l’IHÉS 54 (1981), 73–212.
20. C. Nakayama and T. Saito, Weight spectral sequences and independence of ℓ, Inventiones Mathematicae 127 (1997), no. 1, 73–83.
21. L. Illusie, Complexe de de Rham–Witt II, Publications Mathématiques de l’IHÉS 40 (1971), 5–57.