ПРЕПРИНТ

Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Segal Sheafification and Refinement-Invariant Descent
2025-11-08

We establish categorical results on the interaction between Segal conditions and hypersheafification in derived moduli problems. First, we show that $\tau$-hypersheafification, viewed as a left exact reflector, preserves Segal objects and hence extends Segal presentations of moduli functors to stacks. Second, we prove a refinement-invariant descent theorem: hypercovers refined by Segal morphisms yield equivalent descent data, ensuring stability under local refinements. As an application, we deduce compatibility of mapping stacks and moduli of perfect complexes with Segal sheafification. These results situate Segal-type models within the general framework of descent theory in $\infty$-categories, with further consequences for arithmetic and Tannakian moduli.

Ссылка для цитирования:

Kundnani R. T., Kant Sh., Alam K. 2025. Segal Sheafification and Refinement-Invariant Descent. PREPRINTS.RU. https://doi.org/10.24108/preprints-3113871

Список литературы