Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Segal Sheafification and Refinement-Invariant Descent
2025-11-08
We establish categorical results on the interaction between Segal conditions and
hypersheafification in derived moduli problems.
First, we show that $\tau$-hypersheafification, viewed as a left exact reflector,
preserves Segal objects and hence extends Segal presentations of moduli functors to
stacks.
Second, we prove a refinement-invariant descent theorem: hypercovers refined by
Segal morphisms yield equivalent descent data, ensuring stability under
local refinements.
As an application, we deduce compatibility of mapping stacks and moduli of
perfect complexes with Segal sheafification.
These results situate Segal-type models within the general framework of descent
theory in $\infty$-categories, with further consequences for arithmetic and
Tannakian moduli.
Ссылка для цитирования:
Kundnani R. T., Kant Sh., Alam K. 2025. Segal Sheafification and Refinement-Invariant Descent. PREPRINTS.RU. https://doi.org/10.24108/preprints-3113871
Список литературы
1. Cisinski, D.-C. Les préfaisceaux comme modèles des types d’homotopie. Astérisque 308 (2006). Société Mathématique de France. Available at: https://www.numdam.org/item?id=AST_2006__308__R1_0
2. Bergner, J. E. A model category structure on the category of simplicial categories. Transactions of the American Mathematical Society 359 (2007), no. 5, 2043–2058.
3. Grothendieck, A., and Dieudonné, J. Éléments de géométrie algébrique (EGA). Publications Mathématiques de l’IHÉS, 1960–1967.
4. Artin, M., Grothendieck, A., and Verdier, J.-L. Séminaire de Géométrie Algébrique du Bois Marie (SGA 4): Théorie des topos et cohomologie étale des schémas. Lecture Notes in Mathematics, Vols. 269, 270, 305, Springer, 1972–1973.
5. Toën, B., and Vezzosi, G. Homotopical Algebraic Geometry II: Geometric Stacks and Applications. Memoirs of the American Mathematical Society 193 (2008), no. 902.
6. Lurie, J. Higher Topos Theory. Annals of Mathematics Studies, Vol. 170, Princeton University Press, 2009.
7. Lurie, J. Higher Algebra. Available at: http://www.math.ias.edu/~lurie/, 2017.
8. Milne, J. S. Algebraic Geometry (v2.21). Available at: https://www.jmilne.org/math/, 2017.
9. Rezk, C. A model for the homotopy theory of homotopy theory. Transactions of the American Mathematical Society 353 (2001), 973–1007.
10. Gaitsgory, D., and Rozenblyum, N. A Study in Derived Algebraic Geometry. Vols. I–II, Mathematical Surveys and Monographs, American Mathematical Society, 2017.