Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Квантовая гравитация с кривизной частиц без кривизны пространства
1. [1] Misner C. W., Thorne K. S., Wheeler J. A. Gravitation. W. H. Freeman, 1973.
2. [2] Wald R. M. General Relativity. University of Chicago Press, 1984.
3. [3] Will C. M. Theory and Experiment in Gravitational Physics. 2nd ed., Cambridge University Press,
4. [4] Will C. M. The Confrontation between General Relativity and Experiment. Living Rev. Relativ.
5. 17, 4 (2014).
6. [5] Shapiro I. I. Fourth Test of General Relativity. Phys. Rev. Lett. 13, 789–791 (1964).
7. [6] Bertotti B., Iess L., Tortora P. A test of general relativity using radio links with the Cassini
8. spacecraft. Nature 425, 374–376 (2003).
9. [7] Lebach D. E., Corey B. E., Shapiro I. I. et al. Measurement of the Solar Gravitational Deflection of
10. Radio Waves using VLBI. Phys. Rev. Lett. 75, 1439–1442 (1995).
11. [8] Everitt C. W. F. et al. Gravity Probe B: Final Results of a Space Experiment to Test General
12. Relativity. Phys. Rev. Lett. 106, 221101 (2011).
13. [9] Ciufolini I., Pavlis E. C. A confirmation of the general relativistic prediction of the Lense–Thirring
14. effect. Nature 431, 958–960 (2004).
15. [10] GRAVITY Collaboration. Detection of the Gravitational Redshift in the Orbit of the Star S2 near
16. the Galactic Centre Massive Black Hole. Astron. Astrophys. 615, L15 (2018).
17. [11] GRAVITY Collaboration. Detection of Schwarzschild Precession in the Orbit of the Star S2 around
18. the Galactic Centre Black Hole. Astron. Astrophys. 636, L5 (2020).
19. [12] Peissker F., Eckart A., Zajaˇcek M. et al. S62 on a 9.9 yr Orbit around Sgr A*: the Shortest Known
20. Period Star at the Center of the Milky Way. Astrophys. J. 899, 50 (2020).
21. [13] Peissker F., Eckart A., Sabha N. et al. New Class of S-stars in the Galactic Center: S4711–S4715.
22. Astrophys. J. 933, 49 (2022).
23. [14] Abbott B.P. et al. (LIGO and Virgo Collaborations). GW170817: Observation of Gravitational
24. Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 119, 161101 (2017).
25. [15] Goldstein A. et al. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-
26. GBM Observations of GRB 170817A. Astrophys. J. Lett. 848, L14 (2017).
27. [16] Abbott B.P. et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J.
28. Lett. 848, L12 (2017).
29. [17] Clowe D., Bradac M., Gonzalez A. H. et al. A direct empirical proof of the existence of dark matter.
30. Astrophys. J. Lett. 648, L109–L113 (2006).
31. [18] Markevitch M., Gonzalez A. H., Clowe D. et al. Direct Constraints on the Dark Matter Self-
32. Interaction Cross Section from the Merging Galaxy Cluster 1E 0657–56. Astrophys. J. 606, 819–824
33. (2004).
34. [19] Bartelmann M., Schneider P. Weak Gravitational Lensing. Phys. Rept. 340, 291–472 (2001).
35. [20] Berti E., Cardoso V., Starinets A. O. Quasinormal modes of black holes and black branes. Class.
36. Quantum Grav. 26, 163001 (2009).
37. [21] Cardoso V., Franzin E., Pani P. Is the Gravitational-Wave Ringdown a Probe of the Event Horizon?
38. Phys. Rev. Lett. 116, 171101 (2016).
39. [22] Donoghue J. F. General relativity as an effective field theory: The leading quantum corrections.
40. Phys. Rev. D 50, 3874–3888 (1994).
41. [23] Burgess C.P. Quantum gravity in everyday life: General relativity as an effective field theory.
42. Living Rev. Relativ. 7, 5 (2004).
43. [24] Horndeski G.W. Second-order scalar-tensor field equations in a four-dimensional space. Int. J.
44. Theor. Phys. 10, 363–384 (1974).
45. [25] De Felice A., Tsujikawa S. f(R) Theories. Living Rev. Relativ. 13, 3 (2010).
46. [26] Bekenstein J. D. Relativistic gravitation theory for the MOND paradigm. Phys. Rev. D 70, 083509
47. (2004).
48. [27] Aldrovandi R., Pereira J. G. Teleparallel Gravity: An Introduction. Springer, 2013.
49. [28] Krˇsˇs´ak M. et al. Teleparallel theories of gravity: illuminating a fully invariant approach. Class.
50. Quantum Grav. 36, 183001 (2019).
51. [29] Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641,
52. A6 (2020).
53. [30] Alam S. et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic
54. Survey: cosmological analysis. Mon. Not. R. Astron. Soc. 470, 2617–2652 (2017).
55. [31] Scolnic D. M. et al. The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from
56. Pan-STARRS1 and Cosmological Constraints from the Pantheon Sample. Astrophys. J. 859, 101
57. (2018).
58. [32] Aasi J. et al. Advanced LIGO. Class. Quantum Grav. 32, 074001 (2015).
59. [33] Acernese F. et al. Advanced Virgo: a second-generation interferometric gravitational wave detector.
60. Class. Quantum Grav. 32, 024001 (2015).
61. [34] Amaro-Seoane P. et al. Laser Interferometer Space Antenna. arXiv:1702.00786 (2017).
62. [35] Klein O., Gordon W. Quantentheorie relativistischer Wellenfelder. Z. Phys. 37, 895–906 (1926).
63. [36] Dirac P. A. M. The Quantum Theory of the Electron. Proc. Roy. Soc. A 117, 610–624 (1928).
64. [37] Weyl H. Elektron und Gravitation. I. Z. Phys. 56, 330–352 (1929).
65. [38] Majorana E. Teoria simmetrica dell’elettrone e del positrone. Nuovo Cimento 14, 171–184 (1937).
66. [39] Proca A. Sur la th´eorie ondulatoire des ´electrons positifs et n´egatifs. J. Phys. Radium 7, 347–353
67. (1936).
68. [40] Rarita W., Schwinger J. On a Theory of Particles with Half-Integral Spin. Phys. Rev. 60, 61 (1941).
69. [41] Noether E. Invariante Variationsprobleme. Nachr. Ges. Wiss. G¨ottingen, Math.-Phys. Kl. 235–257
70. (1918).
71. [42] Talmadge C., Berthias J.-P., Hellings R. W., Standish E. M. Model-Independent Constraints on
72. Possible Modifications of Newtonian Gravity. Phys. Rev. Lett. 61, 1159–1162 (1988).
73. [43] Turyshev S. G. Experimental Tests of General Relativity. Annu. Rev. Nucl. Part. Sci. 58, 207–248
74. (2009).
75. [44] Caves C. M., Thorne K. S. Energy of gravitational waves in the wave zone. Rev. Mod. Phys. 52,
76. 341–392 (1980).