ПРЕПРИНТ
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
СОДЕРЖАНИЕ Введение Общая характеристика гистона Н2АХ Природа спонтанных (фоновых) фокусов γH2AX Образование фокусов γH2AX в облученных клетках Влияние структуры хроматина на образование и деградацию радиационно-индуцированных фокусов γH2AX Влияние фазы клеточного цикла на образование и деградацию радиационно-индуцированных фокусов γH2AX Остаточные радиационно-индуцированные фокусы γH2AX Заключение
Чигасова А. К., Осипов A. Н. 2025. Анализ фокусов фосфорилированного гистона H2AX в радиобиологии: обзор литературы. PREPRINTS.RU. https://doi.org/10.24108/preprints-3113944
1. Ahnstrom G, Erixon K. Radiation induced strand breakage in DNA from mammalian cells. Strand separation in alkaline solution. International journal of radiation biology and related studies in physics, chemistry, and medicine. 1973;23(3):285-9.
2. Blocher D. DNA double strand breaks in Ehrlich ascites tumour cells at low doses of x-rays. I. Determination of induced breaks by centrifugation at reduced speed. International journal of radiation biology and related studies in physics, chemistry, and medicine. 1982;42(3):317-28.
3. Schwartz DC, Cantor CR. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell. 1984;37(1):67-75.
4. Osipov A, Arkhangelskaya E, Vinokurov A, Smetaninа N, Zhavoronkov A, Klokov D. DNA Comet Giemsa Staining for Conventional Bright-Field Microscopy. International journal of molecular sciences. 2014;15(4):6086-95. doi: 10.3390/ijms15046086.
5. Bushmanov A, Vorobyeva N, Molodtsova D, Osipov AN. Utilization of DNA double-strand breaks for biodosimetry of ionizing radiation exposure. Environmental Advances. 2022;8. doi: 10.1016/j.envadv.2022.100207.
6. Lobrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, et al. gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle. 2010;9(4):662-9. doi: 10.4161/cc.9.4.10764.
7. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. The Journal of biological chemistry. 1998;273(10):5858-68.
8. Pantazis P, Bonner WM. Quantitative determination of histone modification. H2A acetylation and phosphorylation. The Journal of biological chemistry. 1981;256(9):4669-75.
9. Ikura T, Tashiro S, Kakino A, Shima H, Jacob N, Amunugama R, et al. DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Molecular and cellular biology. 2007;27(20):7028-40. doi: 10.1128/MCB.00579-07.
10. Chew YC, Camporeale G, Kothapalli N, Sarath G, Zempleni J. Lysine residues in N-terminal and C-terminal regions of human histone H2A are targets for biotinylation by biotinidase. The Journal of nutritional biochemistry. 2006;17(4):225-33. doi: 10.1016/j.jnutbio.2005.05.003.
11. Xiao A, Li H, Shechter D, Ahn SH, Fabrizio LA, Erdjument-Bromage H, et al. WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature. 2009;457(7225):57-62. doi: 10.1038/nature07668.
12. Pinto DM, Flaus A. Structure and function of histone H2AX. Sub-cellular biochemistry. 2010;50:55-78. doi: 10.1007/978-90-481-3471-7_4.
13. Rothkamm K, Lobrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci U S A. 2003;100(9):5057-62. doi: 10.1073/pnas.0830918100.
14. Rogakou EP, Boon C, Redon C, Bonner WM. Megabase chromatin domains involved in DNA double-strand breaks in vivo. The Journal of cell biology. 1999;146(5):905-16.
15. MacPhail SH, Banath JP, Yu Y, Chu E, Olive PL. Cell cycle-dependent expression of phosphorylated histone H2AX: reduced expression in unirradiated but not X-irradiated G1-phase cells. Radiation research. 2003;159(6):759-67.
16. Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, et al. GammaH2AX and cancer. Nature reviews Cancer. 2008;8(12):957-67. doi: 10.1038/nrc2523.
17. Wilson PF, Nham PB, Urbin SS, Hinz JM, Jones IM, Thompson LH. Inter-individual variation in DNA double-strand break repair in human fibroblasts before and after exposure to low doses of ionizing radiation. Mutation research. 2010;683(1-2):91-7. doi: 10.1016/j.mrfmmm.2009.10.013.
18. Nakamura AJ, Chiang YJ, Hathcock KS, Horikawa I, Sedelnikova OA, Hodes RJ, et al. Both telomeric and non-telomeric DNA damage are determinants of mammalian cellular senescence. Epigenetics & chromatin. 2008;1(1):6. doi: 10.1186/1756-8935-1-6.
19. Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM. Cellular senescence in aging primates. Science. 2006;311(5765):1257. doi: 10.1126/science.1122446.
20. Nakamura AJ, Redon CE, Bonner WM, Sedelnikova OA. Telomere-dependent and telomere-independent origins of endogenous DNA damage in tumor cells. Aging. 2009;1(2):212-8. doi: 10.18632/aging.100019.
21. Markova E, Schultz N, Belyaev IY. Kinetics and dose-response of residual 53BP1/gamma-H2AX foci: co-localization, relationship with DSB repair and clonogenic survival. International journal of radiation biology. 2007;83(5):319-29. doi: 10.1080/09553000601170469.
22. Costes SV, Boissiere A, Ravani S, Romano R, Parvin B, Barcellos-Hoff MH. Imaging features that discriminate between foci induced by high- and low-LET radiation in human fibroblasts. Radiation research. 2006;165(5):505-15. doi: 10.1667/RR3538.1.
23. McManus KJ, Hendzel MJ. ATM-dependent DNA damage-independent mitotic phosphorylation of H2AX in normally growing mammalian cells. Molecular biology of the cell. 2005;16(10):5013-25. doi: 10.1091/mbc.E05-01-0065.
24. Asaithamby A, Chen DJ. Cellular responses to DNA double-strand breaks after low-dose gamma-irradiation. Nucleic acids research. 2009;37(12):3912-23. doi: 10.1093/nar/gkp237.
25. Mahrhofer H, Burger S, Oppitz U, Flentje M, Djuzenova CS. Radiation induced DNA damage and damage repair in human tumor and fibroblast cell lines assessed by histone H2AX phosphorylation. International journal of radiation oncology, biology, physics. 2006;64(2):573-80. doi: 10.1016/j.ijrobp.2005.09.037.
26. Schollnberger H, Mitchel RE, Crawford-Brown DJ, Hofmann W. Nonlinear dose-response relationships and inducible cellular defence mechanisms. Journal of radiological protection : official journal of the Society for Radiological Protection. 2002;22(3A):A21-5.
27. Kotenko KV, Bushmanov AY, Ozerov IV, Guryev DV, Anchishkina NA, Smetanina NM, et al. Changes in the number of double-strand DNA breaks in Chinese hamster V79 cells exposed to gamma-radiation with different dose rates. International journal of molecular sciences. 2013;14(7):13719-26. doi: 10.3390/ijms140713719.
28. Neumaier T, Swenson J, Pham C, Polyzos A, Lo AT, Yang P, et al. Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(2):443-8. doi: 10.1073/pnas.1117849108.
29. Masuda Y, Kamiya K. Molecular nature of radiation injury and DNA repair disorders associated with radiosensitivity. International journal of hematology. 2012;95(3):239-45. doi: 10.1007/s12185-012-1008-y.
30. Durocher D, Jackson SP. DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Current opinion in cell biology. 2001;13(2):225-31.
31. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Current biology : CB. 2000;10(15):886-95.
32. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. The Journal of biological chemistry. 2001;276(45):42462-7. doi: 10.1074/jbc.C100466200.
33. Stucki M, Jackson SP. gammaH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes. DNA repair. 2006;5(5):534-43. doi: 10.1016/j.dnarep.2006.01.012.
34. Peng Y, Woods RG, Beamish H, Ye R, Lees-Miller SP, Lavin MF, et al. Deficiency in the catalytic subunit of DNA-dependent protein kinase causes down-regulation of ATM. Cancer research. 2005;65(5):1670-7. doi: 10.1158/0008-5472.CAN-04-3451.
35. Shrivastav M, Miller CA, De Haro LP, Durant ST, Chen BP, Chen DJ, et al. DNA-PKcs and ATM co-regulate DNA double-strand break repair. DNA repair. 2009;8(8):920-9. doi: 10.1016/j.dnarep.2009.05.006.
36. An J, Huang YC, Xu QZ, Zhou LJ, Shang ZF, Huang B, et al. DNA-PKcs plays a dominant role in the regulation of H2AX phosphorylation in response to DNA damage and cell cycle progression. BMC molecular biology. 2010;11:18. doi: 10.1186/1471-2199-11-18.
37. Flassig RJ, Maubach G, Tager C, Sundmacher K, Naumann M. Experimental design, validation and computational modeling uncover DNA damage sensing by DNA-PK and ATM. Molecular bioSystems. 2014;10(7):1978-86. doi: 10.1039/c4mb00093e.
38. Ward IM, Chen J. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. The Journal of biological chemistry. 2001;276(51):47759-62. doi: 10.1074/jbc.C100569200.
39. Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. Molecular cell. 2017;66(6):801-17. doi: 10.1016/j.molcel.2017.05.015.
40. Abramenkovs A, Stenerlow B. Measurement of DNA-Dependent Protein Kinase Phosphorylation Using Flow Cytometry Provides a Reliable Estimate of DNA Repair Capacity. Radiation research. 2017;188(6):597-604. doi: 10.1667/RR14693.1.
41. Suzuki K, Okada H, Yamauchi M, Oka Y, Kodama S, Watanabe M. Qualitative and quantitative analysis of phosphorylated ATM foci induced by low-dose ionizing radiation. Radiat Res. 2006;165(5):499-504. doi: 10.1667/RR3542.1.
42. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003;421(6922):499-506. doi: 10.1038/nature01368.
43. Kitagawa R, Kastan MB. The ATM-dependent DNA damage signaling pathway. Cold Spring Harbor symposia on quantitative biology. 2005;70:99-109. doi: 10.1101/sqb.2005.70.002.
44. Yamauchi M, Oka Y, Yamamoto M, Niimura K, Uchida M, Kodama S, et al. Growth of persistent foci of DNA damage checkpoint factors is essential for amplification of G1 checkpoint signaling. DNA repair. 2008;7(3):405-17. doi: 10.1016/j.dnarep.2007.11.011.
45. Enns L, Rasouli-Nia A, Hendzel M, Marples B, Weinfeld M. Association of ATM activation and DNA repair with induced radioresistance after low-dose irradiation. Radiation protection dosimetry. 2015;166(1-4):131-6. doi: 10.1093/rpd/ncv203.
46. Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Lobrich M, et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Molecular cell. 2008;31(2):167-77. doi: 10.1016/j.molcel.2008.05.017.
47. Kim JA, Kruhlak M, Dotiwala F, Nussenzweig A, Haber JE. Heterochromatin is refractory to gamma-H2AX modification in yeast and mammals. The Journal of cell biology. 2007;178(2):209-18. doi: 10.1083/jcb.200612031.
48. Cowell IG, Sunter NJ, Singh PB, Austin CA, Durkacz BW, Tilby MJ. gammaH2AX foci form preferentially in euchromatin after ionising-radiation. PloS one. 2007;2(10):e1057. doi: 10.1371/journal.pone.0001057.
49. Kruhlak MJ, Celeste A, Dellaire G, Fernandez-Capetillo O, Muller WG, McNally JG, et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. The Journal of cell biology. 2006;172(6):823-34. doi: 10.1083/jcb.200510015.
50. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annual review of biochemistry. 2004;73:39-85. doi: 10.1146/annurev.biochem.73.011303.073723.
51. Ziv Y, Bielopolski D, Galanty Y, Lukas C, Taya Y, Schultz DC, et al. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nature cell biology. 2006;8(8):870-6. doi: 10.1038/ncb1446.
52. Goodarzi AA, Kurka T, Jeggo PA. KAP-1 phosphorylation regulates CHD3 nucleosome remodeling during the DNA double-strand break response. Nature structural & molecular biology. 2011;18(7):831-9. doi: 10.1038/nsmb.2077.
53. Beucher A, Birraux J, Tchouandong L, Barton O, Shibata A, Conrad S, et al. ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. The EMBO journal. 2009;28(21):3413-27. doi: 10.1038/emboj.2009.276.
54. Bee L, Fabris S, Cherubini R, Mognato M, Celotti L. The efficiency of homologous recombination and non-homologous end joining systems in repairing double-strand breaks during cell cycle progression. PloS one. 2013;8(7):e69061. doi: 10.1371/journal.pone.0069061.
55. Belov O, Chigasova A, Pustovalova M, Osipov A, Eremin P, Vorobyeva N, et al. Dose-Dependent Shift in Relative Contribution of Homologous Recombination to DNA Repair after Low-LET Ionizing Radiation Exposure: Empirical Evidence and Numerical Simulation. Curr Issues Mol Biol. 2023;45(9):7352-73. doi: 10.3390/cimb45090465.
56. Osipov A, Chigasova A, Yashkina E, Ignatov M, Fedotov Y, Molodtsova D, et al. Residual Foci of DNA Damage Response Proteins in Relation to Cellular Senescence and Autophagy in X-Ray Irradiated Fibroblasts. Cells. 2023;12(8). doi: 10.3390/cells12081209.
57. Osipov A, Chigasova A, Belov O, Yashkina E, Ignatov M, Fedotov Y, et al. Dose threshold for residual γH2AX, 53BP1, pATM and p-p53 (Ser-15) foci in X-ray irradiated human fibroblasts. International Journal of Radiation Biology. 2025;101(3):254-63. doi: 10.1080/09553002.2024.2445581.
58. Vaurijoux A, Voisin P, Freneau A, Barquinero JF, Gruel G. Transmission of persistent ionizing radiation-induced foci through cell division in human primary cells. Mutation research. 2017;797-799:15-25. doi: 10.1016/j.mrfmmm.2017.03.003.
59. Minakawa Y, Atsumi Y, Shinohara A, Murakami Y, Yoshioka K. Gamma-irradiated quiescent cells repair directly induced double-strand breaks but accumulate persistent double-strand breaks during subsequent DNA replication. Genes to cells : devoted to molecular & cellular mechanisms. 2016;21(7):789-97. doi: 10.1111/gtc.12381.
60. Alessio N, Del Gaudio S, Capasso S, Di Bernardo G, Cappabianca S, Cipollaro M, et al. Low dose radiation induced senescence of human mesenchymal stromal cells and impaired the autophagy process. Oncotarget. 2015;6(10):8155-66. doi: 10.18632/oncotarget.2692.
61. Chowdhury D, Keogh MC, Ishii H, Peterson CL, Buratowski S, Lieberman J. gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Molecular cell. 2005;20(5):801-9. doi: 10.1016/j.molcel.2005.10.003.
62. Chowdhury D, Xu X, Zhong X, Ahmed F, Zhong J, Liao J, et al. A PP4-phosphatase complex dephosphorylates gamma-H2AX generated during DNA replication. Molecular cell. 2008;31(1):33-46. doi: 10.1016/j.molcel.2008.05.016.
63. Banath JP, Klokov D, MacPhail SH, Banuelos CA, Olive PL. Residual gammaH2AX foci as an indication of lethal DNA lesions. BMC cancer. 2010;10:4. doi: 10.1186/1471-2407-10-4.
64. Sak A, Stueben G, Groneberg M, Bocker W, Stuschke M. Targeting of Rad51-dependent homologous recombination: implications for the radiation sensitivity of human lung cancer cell lines. British journal of cancer. 2005;92(6):1089-97. doi: 10.1038/sj.bjc.6602457.