Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Роль микроРНК, регулирующих гены окислительного стресса, при синдроме поликистозных яичников
1. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertility and Sterility.2004; 81(1):19–25. https://doi.org/10.1016/j.fertnstert.2003.10.004
2. Сухих Г. Т., Бирюкова А. М., Назаренко Т. А., & Дуринян, Э. Р. Эндокринно-метаболические особенности у пациенток с синдромом поликистозных яичников. Акушерство и гинекология. 2011; 4: 45-49
3. Чернуха Г. Е., Найдукова А. А., Каприна Е. К., & Донников, А. Е. Молекулярно-генетические предикторы формирования синдрома поликистозных яичников и его андрогенных фенотипов. Акушерство и гинекология. 2021; 4: 120-127. DOI: 10.18565/aig.2021.4.120-127
4. Murri M., Luque-Ramírez M., Insenser M., Ojeda-Ojeda M., & Escobar-Morreale H. F. Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis. Human reproduction update, 2013; 19(3): 268-288. https://doi.org/10.1093/humupd/dms059
5. Rudnicka E., Duszewska A. M., Kucharski M., Tyczyński P., & Smolarczyk R. Oxidative stress and reproductive function: oxidative stress in polycystic ovary syndrome. Reproduction. 2022; 164(6): F145-F154. DOI: https://doi.org/10.1530/REP-22-0152
6. Agarwal A., Aponte-Mellado A., Premkumar B. J., Shaman A., & Gupta S. The effects of oxidative stress on female reproduction: a review. Reproductive biology and endocrinology. 2012; 10(1): 49
7. Bartel D. P. Metazoan micrornas //Cell. – 2018. – Т. 173. – №. 1. – С. 20-51. doi.org/10.1016/j.cell.2018.03.006
8. Gao H., Jiang J., Shi Y., Chen J., Zhao, L. & Wang, C. The LINC00477/miR-128 axis promotes the progression of polycystic ovary syndrome by regulating ovarian granulosa cell proliferation and apoptosis. Reproductive Biology and Endocrinology. 2021; 19(1): 29. https://doi.org/10.1186/s12958-021-00718-z
9. Hess A. L., Larsen L. H., Udesen P. B., Sanz Y., Larsen T. M., & Dalgaard L. T. Levels of circulating miR‐122 are associated with weight loss and metabolic syndrome. Obesity. 2020; 28(3): 493-501. https://doi.org/10.1002/oby.22704
10. Гутникова Л. В., Шкурат Т. П., Идентификация транскриптов микроРНК в гранулезных клетках кумулюса при синдроме поликистозных яичников // «Живые и биокосные системы». 2025; 51. URL: https://jbks.ru/archive/issue-51/article-16; DOI: 10.18522/2308-9709-2025-51-16
11. Cai G., Ma X., Chen B., Huang Y., Liu S., Yang H., & Zou W. MicroRNA-145 negatively regulates cell proliferation through targeting IRS1 in isolated ovarian granulosa cells from patients with polycystic ovary syndrome. Reproductive Sciences. 2017; 24(6): 902-910. https://doi.org/10.1177/1933719116673197
12. Fu X., He Y., Wang X., Peng D., Chen X., Li X., & Wan Q. MicroRNA-16 promotes ovarian granulosa cell proliferation and suppresses apoptosis through targeting PDCD4 in polycystic ovarian syndrome. Cellular Physiology and Biochemistry. 2018; 48(2): 670-682. https://doi.org/10.1159/000491894
13. Wang T., Liu Y., Lv M., Xing Q., Zhang Z., He, X., ... & Cao Y. miR-323-3p regulates the steroidogenesis and cell apoptosis in polycystic ovary syndrome (PCOS) by targeting IGF-1. Gene. 2019; 683: 87-100. https://doi.org/10.1016/j.gene.2018.10.006
14. Jiang Y. C., & Ma J. X. The role of MiR-324-3p in polycystic ovary syndrome (PCOS) via targeting WNT2B. European Review for Medical & Pharmacological Sciences. 2018; 22(11): 3286-3293
15. Wang M., Zhang S. MiR-145 on the proliferation of ovarian cancer cells by regulating the expression of MMP-2/MMP-9 //Cellular and Molecular Biology. 2021; 67 (6): 141-148. https://doi.org/10.14715/cmb/2021.67.6.19
16. Naji M., Nekoonam S., Aleyasin A., Arefian E., Mahdian R., Azizi E., ... & Amidi F. Expression of miR-15a, miR-145, and miR-182 in granulosa-lutein cells, follicular fluid, and serum of women with polycystic ovary syndrome (PCOS). Archives of gynecology and obstetrics. 2018; 297(1): 221-231. https://doi.org/10.1007/s00404-017-4570-y
17. Chelegahi A. M., Ebrahimi S. O., Reiisi S., & Nezamnia M. A glance into the roles of microRNAs (exosomal and non-exosomal) in polycystic ovary syndrome. Obstetrics & Gynecology Science. 2024; 67(1): 30-48. DOI: https://doi.org/10.5468/ogs.23193
18. He M., Wu N., Leong M. C., Zhang W., Ye Z., Li R., ... & Hu R. miR-145 improves metabolic inflammatory disease through multiple pathways. Journal of molecular cell biology. 2020; 12(2): 152-162. https://doi.org/10.1093/jmcb/mjz015
19. Zhao C., Liu X., Shi Z., Zhang J., Zhang J., Jia X., & Ling X. Role of serum miRNAs in the prediction of ovarian hyperstimulation syndrome in polycystic ovarian syndrome patients. Cellular Physiology and Biochemistry. 2015; 35(3): 1086-1094
20. Zehra N., Azhar A., & Rehman R. MicroRNA-16, Programmed Cell Death Protein-4 (PDCD-4) and Polycystic Ovarian Syndrome. Journal of the College of Physicians and Surgeons Pakistan. 2020; 30(8): 880-882
21. Hasegawa T., Kamada Y., Hosoya T., Fujita S., Nishiyama Y., Iwata N., ... & Otsuka F. A regulatory role of androgen in ovarian steroidogenesis by rat granulosa cells. The Journal of steroid biochemistry and molecular biology. 2017; 172: 160-165. https://doi.org/10.1016/j.jsbmb.2017.07.002
22. Zhao Y., Tao M., Wei M., Du S., Wang H., & Wang X. Mesenchymal stem cells derived exosomal miR-323-3p promotes proliferation and inhibits apoptosis of cumulus cells in polycystic ovary syndrome (PCOS). Artificial cells, nanomedicine, and biotechnology. 2019; 47(1): 3804-3813. https://doi.org/10.1159/000373934
23. Wu L., Tu Z., Bao Y., Zhai Q., & Jin L. Long noncoding RNA NEAT1 decreases polycystic ovary syndrome progression via the modulation of the microRNA‐324‐3p and BRD3 axis. Cell Biology International.2022; 46(12): 2075-2084. https://doi.org/10.1002/cbin.11893
24. Chakraborti S. (ed.). Handbook of oxidative stress in cancer: therapeutic aspects. – Springer Nature. 2022. 4120p. https://doi.org/10.1007/978-981-16-5422-0
25. Carbonell T., & Gomes A. V. MicroRNAs in the regulation of cellular redox status and its implications in myocardial ischemia-reperfusion injury. Redox biology. 2020; 36: 101607. https://doi.org/10.1016/j.redox.2020.101607
26. Li S. Z., Hu Y. Y., Zhao J., Zhao Y. B., Sun J. D., Yang Y. F., ... & Fei Z. MicroRNA-34a induces apoptosis in the human glioma cell line, A172, through enhanced ROS production and NOX2 expression. Biochemical and biophysical research communications. 2014; 444(1): 6-12. https://doi.org/10.1016/j.bbrc.2013.12.136
27. Youn S. W., Li Y., Kim Y. M., Sudhahar V., Abdelsaid K., Kim H. W., ... & Ushio-Fukai M. Modification of cardiac progenitor cell-derived exosomes by miR-322 provides protection against myocardial infarction through Nox2-dependent angiogenesis. Antioxidants. 2019; 8(1): 18. https://doi.org/10.3390/antiox8010018
28. Liu W., Zabirnyk O., Wang H., Shiao Y. H., Nickerson M. L., Khalil S., ... & Phang J. M. miR-23b* targets proline oxidase, a novel tumor suppressor protein in renal cancer. Oncogene. 2010; 29(35): 4914-4924. https://doi.org/10.1038/onc.2010.237
29. Kern F., Aparicio-Puerta E., Li Y., Fehlmann T., Kehl T., Wagner V., ... & Keller A. miRTargetLink 2.0—interactive miRNA target gene and target pathway networks. Nucleic acids research. 2021; 49(W1): W409-W416. https://doi.org/10.1093/nar/gkab297
30. Zhang Y., Zheng S., Geng Y., Xue J., Wang Z., Xie X., ... & Hou Y. MicroRNA profiling of atrial fibrillation in canines: miR-206 modulates intrinsic cardiac autonomic nerve remodeling by regulating SOD1. PloS ОNE. 2015;10(3): e0122674. https://doi.org/10.1371/journal.pone.0122674
31. Meng X., Wu J., Pan C., Wang H., Ying X., Zhou Y., ... & Huang W. Genetic and epigenetic down-regulation of microRNA-212 promotes colorectal tumor metastasis via dysregulation of MnSOD. Gastroenterology. 2013; 145(2): 426-436. https://doi.org/10.1053/j.gastro.2013.04.004
32. Haque R, Chun E, Howell JC, Sengupta T, Chen D, Kim H. MicroRNA-30b-Mediated Regulation of Catalase Expression in Human ARPE-19 Cells. PLoS ONE . 2012 ; 7(8): e42542. https://doi.org/10.1371/journal.pone.0042542
33. Xu X., Wells A., Padilla M. T., Kato K., Kim K. C., & Lin Y. A signaling pathway consisting of miR-551b, catalase and MUC1 contributes to acquired apoptosis resistance and chemoresistance. Carcinogenesis.2014; 35(11): 2457-2466. https://doi.org/10.1093/carcin/bgu159
34. Matoušková P., Hanousková B., & Skálová L. MicroRNAs as potential regulators of glutathione peroxidases expression and their role in obesity and related pathologies. International Journal of Molecular Sciences. 2018; 19(4): 1199. https://doi.org/10.3390/ijms19041199
35. Verma S., Thompson C. L., Fu P., MacLennan G. T., & Gupta S. miRNAs Regulating GSTP1 as Potential Diagnostic Biomarkers in Prostate Cancer. The Prostate. 2025; 85(13): 1235-1244. https://doi.org/10.1002/pros.70011
36. Zargari M., Maadi N., Rezapour M., Bagheri A., Fallahpour S., Nosrati M., & Mahrooz A. The Regulatory Variant-108C/T in the Promoter of Paraoxonase 1 (PON1) Gene has a More Important Role in Regulating PON1 Activity Compared to rs3735590 in 3ʹ-UTR in Patients with Coronary Artery Disease. Advanced Biomedical Research. 2024; 13(1): 38. DOI: 10.4103/abr.abr_391_22
37. Joseph S., Barai R. S., Bhujbalrao R., & Idicula-Thomas S. PCOSKB: A KnowledgeBase on genes, diseases, ontology terms and biochemical pathways associated with PolyCystic Ovary Syndrome. Nucleic acids research. 2016; 44(D1): D1032-D1035. https://doi.org/10.1093/nar/gkv1146
38. Ortega F. J., Mercader J. M., Moreno-Navarrete J. M., Rovira O., Guerra E., Esteve E., ... & Fernandez-Real J. M. Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes care. 2014; 37(5): 1375-1383. https://doi.org/10.2337/dc13-1847
39. Wang Q., Fang C., Zhao Y., & Liu Z. Correlation study on serum miR-222-3p and glucose and lipid metabolism in patients with polycystic ovary syndrome. BMC Women's Health. 2022; 22(1): 398. https://doi.org/10.1186/s12905-022-01912-w
40. Liu X., Yu J., Jiang L. U., Wang A., Shi F., Ye H., & Zhou X. MicroRNA-222 regulates cell invasion by targeting matrix metalloproteinase 1 (MMP1) and manganese superoxide dismutase 2 (SOD2) in tongue squamous cell carcinoma cell lines. Cancer genomics & proteomics. 2009; 6(3): 131-139
41. Ломтева С.В. Роль генов, связанных с окислительным стрессом, в синдроме поликистозных яичников: понимание генетической предрасположенности и патогенеза // Экологическая генетика. 2025; 23 (3). doi: 10.17816/ecogen679724
42. Tabrizi Z. P. F., Miraj S., Tahmasebian S., & Ghasemi S. Plasma levels of miR-27a, miR-130b, and miR-301a in polycystic ovary syndrome. International Journal of Molecular and Cellular Medicine. 2020; 9(3): 198. doi: 10.22088/IJMCM.BUMS.9.3.198
43. Wang M., Sun J., Xu B., Chrusciel M., Gao J., Bazert M., ... & Li X. Functional characterization of MicroRNA-27a-3p expression in human polycystic ovary syndrome. Endocrinology.2018; 159(1): 297-309. https://doi.org/10.1210/en.2017-00219
44. Lavanya K. K., Palaniappan, N., Vinodhini V., & Silambanan S. et al. Serum microRNAs as Diagnostic Markers in Polycystic Ovary Syndrome: A Narrative Review //Journal of Clinical & Diagnostic Research. 2025; 19 (1). DOI:10.7860/JCDR/2025/74412.20507
45. He X., Jing Z., Cheng G. MicroRNAs: new regulators of Toll‐like receptor signalling pathways //BioMed research international. 2014; 1: 945169. https://doi.org/10.1155/2014/945169
46. Yang H., Li T. W., Zhou Y., Peng H., Liu T., Zandi E., ... & Lu S. C. Activation of a novel c-Myc-miR27-prohibitin 1 circuitry in cholestatic liver injury inhibits glutathione synthesis in mice. Antioxidants & redox signaling. 2015; 22(3): 259-274. https://doi.org/10.1089/ars.2014.6027
47. Chen X., Xie M., Liu D., & Shi K. Downregulation of microRNA-146a inhibits ovarian granulosa cell apoptosis by simultaneously targeting interleukin-1 receptor-associated kinase and tumor necrosis factor receptor-associated factor 6. Molecular Medicine Reports. 2015; 12(4): 5155-5162. https://doi.org/10.3892/mmr.2015.4036
48. Cho SH, An HJ, Kim KA, Ko JJ, Kim JH, Kim YR, et al. Single nucleotide polymorphisms at miR-146a/196a2 and their primary ovarian insufficiency-related target gene regulation in granulosa cells. PLoS ONE. 2017; 12(8): e0183479. https://doi.org/10.1371/journal.pone.0183479
49. Ashrafnezhad Z., Naji M., Aleyasin A., Hedayatpour A., Mahdavinezhad F., Gharaei R., ... & Amidi F. Evaluating the Differential Expression of miR-146a, miR-222, and miR-9 in Matched Serum and Follicular Fluid of Polycystic Ovary Syndrome Patients: Profiling and Predictive Value. International Journal of Molecular and Cellular Medicine. 2022; 11(4): 320. doi: 10.22088/IJMCM.BUMS.11.4.320 DOI: 10.1074/jbc.M113.526152
50. Wang Q., Chen W., Bai L., Chen W., Padilla M. T., Lin A. S., ... & Lin Y. Receptor-interacting protein 1 increases chemoresistance by maintaining inhibitor of apoptosis protein levels and reducing reactive oxygen species through a microRNA-146a-mediated catalase pathway. Journal of Biological Chemistry. 2014; 289(9), 5654-5663. DOI: 10.1074/jbc.M113.526152
51. Chen Y. H., Heneidi S., Lee J. M., Layman L. C., Stepp D. W., Gamboa G. M., ... & Azziz R. miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes.2013; 62(7): 2278-2286. https://doi.org/10.2337/db12-0963
52. Bao C., Chen J., Chen D., Lu Y., Lou W., Ding B., ... & Fan W. MiR-93 suppresses tumorigenesis and enhances chemosensitivity of breast cancer via dual targeting E2F1 and CCND1. Cell death & disease. 2020; 11(8): 618. https://doi.org/10.1038/s41419-020-02855-6
53. Tan W., Dai F., Yang D., Deng Z., Gu R., Zhao X., & Cheng Y. MiR-93-5p promotes granulosa cell apoptosis and ferroptosis by the NF-kB signaling pathway in polycystic ovary syndrome. Frontiers in immunology. 2022; 13: 967151. https:// doi.org/10.3389/fimmu.2022.967151
54. Aldakheel F. M., Abuderman A. A., Alduraywish S. A., Xiao Y., & Guo W. W. MicroRNA-21 inhibits ovarian granulosa cell proliferation by targeting SNHG7 in premature ovarian failure with polycystic ovary syndrome. Journal of Reproductive Immunology. 2021; 146: 103328. https://doi.org/10.1016/j.jri.2021.103328
55. Mei Y., Bian C., Li J., Du Z., Zhou H., Yang Z., & Zhao R. C. miR‐21 modulates the ERK–MAPK signaling pathway by regulating SPRY2 expression during human mesenchymal stem cell differentiation. Journal of cellular biochemistry. 2013; 114(6): 1374-1384. https://doi.org/10.1002/jcb.24479