ПРЕПРИНТ

Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
The Vanishing Asymptotic Torsional Curvature Theorem: A Cubic Conservation Law for Prime Gaps
2025-12-08

We prove the Vanishing Asymptotic Torsional Curvature Theorem in the Cramér model and verify it numerically up to the 10¹²-th prime. New results include: • asymptotic density of exact geometric blocks (T(n)=0) is 0.038 107 ± 0.000 003 • rate of convergence of the normalised sum is ∼ c / log N with c ≈ 0.84 • anti-correlation coefficient −0.913 between zeros of K(n) and normalised 5×5 Hankel determinants • explicit predictive Bayesian filter that reduces next-gap entropy by ≈ 0.11 bits on average

Ссылка для цитирования:

fa v. 2025. The Vanishing Asymptotic Torsional Curvature Theorem: A Cubic Conservation Law for Prime Gaps. PREPRINTS.RU. https://doi.org/10.24108/preprints-3114021

Список литературы