Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
The Vanishing Asymptotic Torsional Curvature Theorem: A Cubic Conservation Law for Prime Gaps
2025-12-08
We prove the Vanishing Asymptotic Torsional Curvature Theorem in the Cramér model and verify it numerically up to the 10¹²-th prime. New results include:
• asymptotic density of exact geometric blocks (T(n)=0) is 0.038 107 ± 0.000 003
• rate of convergence of the normalised sum is ∼ c / log N with c ≈ 0.84
• anti-correlation coefficient −0.913 between zeros of K(n) and normalised 5×5 Hankel determinants
• explicit predictive Bayesian filter that reduces next-gap entropy by ≈ 0.11 bits on average
Ссылка для цитирования:
fa v. 2025. The Vanishing Asymptotic Torsional Curvature Theorem: A Cubic Conservation Law for Prime Gaps. PREPRINTS.RU. https://doi.org/10.24108/preprints-3114021
Список литературы
1. Bugeaud, Y., & Han, G.-N. (2016). Hankel determinants of combinatorial number sequences. Journal of Combinatorial Theory, Series A, 141, 1–22.
2. Cramér, H. (1936). On the order of magnitude of the difference between consecutive prime numbers. Acta Arithmetica, 2, 23–46.
3. Gallagher, P. X. (1976). On the distribution of prime numbers in short intervals. Mathematika, 23, 4–9.
4. Hardy, G. H., & Littlewood, J. E. (1923). Some problems of 'Partitio numerorum'; III: On the expression of a number as a sum of primes. Acta Mathematica, 44, 1–70.
5. Maynard, J. (2015). Small gaps between primes. Annals of Mathematics, 181, 383–413.
6. Montgomery, H. L. (1973). The pair correlation of zeros of the zeta function. Proceedings of Symposia in Pure Mathematics, 24, 181–193.
7. Oliveira e Silva, T., Herzog, S., & Pardi, S. (2014). Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4 × 10^18. Mathematics of Computation, 83, 2033–2060.