Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Inverse spectral problem for the Hill operator on the graph with a loop
1. Akhtyamov, AM, Trooshin, IY. Direct and Boundary Inverse Spectral problems for Sturm-Liouville differential operators on noncompact star-shaped graphs. Azerbaijan Journal of Mathematics, V.9, Issue 1,pp:108-124
2. Gasymov, M. G. Spectral analysis of a class of second-order nonselfadjoint differential operators. (Russian) Funktsional. Anal. i Prilozhen. 14 (1980), no. 1, 14--19, 96.
3. Gomilko, A.M. and Pivovarchik, V.N. Inverse STURM–LIOUVILLE problem on a figure-eight graph. Ukr Math J (2008) 60: 1360. https://doi.org/10.1007/s11253-009-0145-9
4. Fegan, H. D. "Special function potentials for the Laplacian." Canad. J. Math 34 (1982): 1183-1194.
5. Shin, Kwang C. On half-line spectra for a class of non-self-adjoint Hill operators. Math. Nachr. 261/262 (2003), 171--175
6. Carlson, Robert. A note on analyticity and Floquet isospectrality. Proc. Amer. Math. Soc. 134 (2006), no. 5, 1447--1449 (electronic).
7. Carlson, Robert. Hill's equation for a homogeneous tree. Electron. J. Differential Equations 1997, No. 23, 30 pp. (electronic).
8. Guillemin, V., and A. Uribe. "Spectral properties of a certain class of complex potentials." Transactions of the American Mathematical Society 279.2 (1983): 759-771.
9. Pastur L. A., Tkachenko V. A. Spectral theory of Schrödinger operators with periodic complex-valued potentials , Functional Analysis and its Applications.22 (1988), no 2. 156-158.
10. Efendiev, R. F. Spectral analysis for one class of second-order indefinite non-self-adjoint differential operator pencil. Appl. Anal. 90 (2011), no. 12, 1837--1849.
11. Efendiev, R. F. The characterization problem for one class of second order operator pencil with complex periodic coefficients. Mosc. Math. J. 7 (2007), no. 1, 55--65, 166
12. Efendiev, R. F. Spectral analysis of a class of nonselfadjoint differential operator pencils with a generalized function. (Russian) Teoret. Mat. Fiz. 145 (2005), no. 1, 102--107; translation in Theoret. and Math. Phys. 145 (2005), no. 1, 1457--1461
13. Efendiev, R. F.; Orudzhev, H. D. Inverse wave spectral problem with discontinuous wave speed. Zh. Mat. Fiz. Anal. Geom. 6 (2010), no. 3, 255--265.
14. Efendiev, Rakib F., Hamzaga D. Orudzhev, and Zaki FA El-Raheem. "Spectral analysis of wave propagation on branching strings." Boundary Value Problems 2016.1 (2016): 215.
15. Exner, Pavel. "Magnetoresonances on a lasso graph." Foundations of Physics 27.2 (1997): 171-190.
16. Yang, Chuan-Fu. "Inverse problems for the differential operator on a graph with cycles." Journal of Mathematical Analysis and Applications 445.2 (2017): 1548-1562.
17. Berkolaiko, Gregory. "An elementary introduction to quantum graphs." arXiv preprint arXiv:1603.07356 (2016).
18. Kurasov, Pavel. "Inverse scattering for lasso graph." Journal of Mathematical Physics 54.4 (2013): 042103.
19. Mochizuki K. and Trooshin I.Yu. "On the scattering on a Loop-shaped Graph'' Progress in Mathematics, Vol.301, 227-245, (2012)