Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Lorentzian geometrical structures with global time, Gravity and Electrodynamics
2022-08-04
We investigate Lorentzian structures in the four-dimensional
space-time, supplemented either by a covector field of the
time-direction or by a scalar field of the global time. Furthermore,
we propose a new metrizable model of the gravity. In contrast to the
usual Theory of General Relativity where all ten components of the
symmetric pseudo-metrics are independent variables, the presented
here model of the gravity essentially depend only on single
four-covector field, restricted to have only three-independent
components. However, we prove that the Gravitational field, ruled by
the proposed model and generated by some massive body, resting and
spherically symmetric in some coordinate system, is given by a
pseudo-metrics, which coincides with the
well known Schwarzschild metric from the General Relativity. The
Maxwell equations and Electrodynamics are also investigated in the
frames of the proposed model. In particular, we derive the covariant
formulation of Electrodynamics of moving dielectrics and
para/diamagnetic mediums.
Ссылка для цитирования:
Poliakovsky A. 2022. Lorentzian geometrical structures with global time, Gravity and Electrodynamics. PREPRINTS.RU. https://doi.org/10.24108/preprints-3112369
Список литературы
1. References
2. [1] C. Duval, On Galilean isometries, Class. Quantum Grav. 10, 2217 (1993), doi:10.1088/0264-9381/10/11/006, [arXiv:0903.1641].
3. [2] C. Duval, G. Burdet, H. P. K¨unzle and M. Perrin, Bargmann structures and Newton–Cartantheory, Phys. Rev. D 31, 1841 (1985), doi:10.1103/PhysRevD.31.1841.
4. [3] C. Duval and P. A. Horv´athy, Non–relativistic conformal symmetries and Newton–Cartan structures, J. Phys. A: Math. Theor. 42, 465206 (2009), doi:10.1088/1751- 8113/42/46/465206,
5. arXiv:0904.0531.
6. [4] C. Duval and H. P. K¨unzle, Minimal gravitational coupling in the Newtonian theory and the
7. covariant Schr¨odinger equation, Gen. Relat. Gravit. 16, 333 (1984), doi:10.1007/BF00762191.
8. [5] K. Jensen, On the coupling of Galilean–invariant field theories to curved spacetime, SciPost
9. Phys. 5, 011 (2018).
10. [6] H. P. K¨unzle, Galilei and lorentz structures on space–time : comparison of the corresponding
11. geometry and physics, Ann. Inst. H. Poincar´e Phys. Th´eor. 17, 337 (1972).
12. [7] L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields Vol. 2 in Course of Theoretical
13. Physics Book (4rd ed.) (1975).