Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
The inhomogeneity of a vector field as a sum of biquaternions, rotations, and spinors in a generalized Clifford algebra
2022-08-17
In 4-dimensional curved space, the article presents the relations between the vector field inhomogeneity, biquaternions, rotations, and spinors. As a mathematical tool, the generalized Clifford algebra has been employed. The electromagnetic field inhomogeneity is proven to be made up of three independent rotations, biquaternions, and three pairs of spinors-antispinors.
Ссылка для цитирования:
Babaev A. K. 2022. The inhomogeneity of a vector field as a sum of biquaternions, rotations, and spinors in a generalized Clifford algebra. PREPRINTS.RU. https://doi.org/10.24108/preprints-3112462
Список литературы
1. [1] Babaev A. Kh. Alternative formalism is based on the Clifford algebra. SCI-ARTICLE. №40 (December) 2016. page 34. In Russian.
2. [2] Doran, Chris J. L. (1994), Geometric Algebra and its Application to Mathematical Physics (Ph.D. thesis), University of Cambridge, DOI: 10.17863/CAM.16148, hdl:1810/251691, OCLC 53604228. page 5.
3. [3] Grove, Larry C. (2002), Classical groups and geometric algebra, Graduate Studies in Mathematics, vol. 39, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-2019-3, MR 1859189
4. [4] Serge Lang, Algebra, - Rev. 3rd ed. ISBN 0 - 387 - 95385 - X, pp. 83 - 116. .
5. [5] Rukhsan-Ul-Haq (December 2016). "Geometry of Spin: Clifford Algebraic Approach", Spin and Clifford Algebras, an Introduction, pp. 17 - 27.
6. [6] Kravchenko V. V. Applied quaternionic analysis, Herdermann - Verlag, Research and Exposition in Mathematics Series, v. 28, 136 pp. ISBN 3-88538-228-8.
7. [7] Hazewinkel M., Gubareni N. M. Algebras, rings and modules - Springer Science + Business Media, 2004. - P. 12. - ISBN 978-1-4020-2690-4
8. [8] Huerta, John (27 September 2010). "Introducing The Quaternions".