Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Variable Metric Primal-Dual Method for Convex Optimization Problems with Changing Constraints
1. Khan, M., Pandurangan, G., Kumar, V.: Distributed algorithms for constructing approximate minimum spanning trees in wireless sensor networks. IEEE Trans. Paral. Distrib. Syst. 20, 124-139 (2009)
2. Lobel, I., Ozdaglar, A., Feijer, D.: Distributed multi-agent optimization with state-dependent communication. Math. Program. 129, 255-284 (2011)
3. Peng, Z., Yan, M., Yin, W.: Parallel and distributed sparse optimization. The 47th Asilomar Conference on Signals, Systems and Computers, pp.646-659. Pacific Grove, IEEE (2013)
4. Konnov, I.V.: Primal-dual method for optimization problems with changing constraints. In: P. Pardalos et al. (eds.) Mathematical Optimization Theory and Operations Research (MOTOR 2022), Lecture Notes in Computer Science \textbf{13367}, pp. 46-61. Springer, Cham (2022)
5. Antipin, A.S.: On non-gradient methods for optimization of saddle functions. In: Karmanov, V.G. (ed.) Problems of Cybernetics. Methods and Algorithms for the Analysis of Large Systems, pp.4-13. Nauchn. Sovet po Probleme "Kibernetika", Moscow (1988) [In Russian]
6. Gol'shtein, E.G., Tret'yakov, N.V.: Modified Lagrange functions. Nauka, Moscow (1989) [Engl. transl. in John Wiley and Sons, New York (1996)].
7. Rockafellar, R.T.: Convex analysis. Princeton University Press, Princeton (1970)
8. Polyak, B.T.: Introduction to optimization. Nauka, Moscow (1983) [Engl. transl. in Optimization Software, New York (1987)]
9. Kontogiorgis, S., Meyer, R.: A variable-penalty alternating directions method for convex optimization.
10. Math. Program. 83, 29-53 (1998)
11. He, B., Wang, S., Yang, H.: A modified variable-penalty alternating directions method for monotone variational inequalities. J. Comput. Mathem. 21, 495-504 (2003)
12. Gantmacher, F.R.: The theory of matrices. Nauka, Moscow, 1966) [In Russian]
13. Hamedani, E.Y., Aybat, N.S.: A decentralized primal-dual method for constrained minimization of a strongly convex function. Preprint arXiv:1908.11835v4 on 21 Feb. 2022. - 27 pp.
14. Blondel, V.D., Hendrickx, J.M., Olshevsky, A., Tsitsiklis, J.N.: Convergence in multiagent coordination, consensus, and flocking. In: Proceedings of the 44-th IEEE Conference on Decision and Control, Seville
15. (2005) - 5 pp.
16. Nedic, A., Olshevsky, A.: Distributed optimization over time-varying directed graphs. IEEE Trans. Autom. Control. 60, 601-615 (2015)
17. Aybat, N.S., Hamedani, E.Y.: A primal-dual method for conic constrained distributed optimization problems. In: Advances in Neural Information Processing Systems, pp.5049-5057. Neural Information Processing Systems Foundation, Barcelona (2016)