Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Line integrals in the concept of hypercomplex numbers within Clifford algebra
2022-08-22
The paper presents the relation between line and surface integrals in Clifford algebra (ℰ4) and, in particular, in Cartesian space (ℰ3). The bijection between hypercomplex numbers and elements of space ℰ4, in particular ℰ3, has been set. The generalized Stokes theorem and Cauchy's integral theorem are generalized and combined into one. The physical interpretation of the formulas is in accord with the laws of the circulation of the electromagnetic field and gives some nontrivial results.
Ссылка для цитирования:
Babaev A. K. 2022. Line integrals in the concept of hypercomplex numbers within Clifford algebra. PREPRINTS.RU. https://doi.org/10.24108/preprints-3112466
Список литературы
1. [1]. T. Wagenknecht, C. Harris, V.V. Kisil, Numbers and Vectors, Lecture Notes, School of Mathematics, University of Leeds, Chapter1, Numbers. https://www1.maths.leeds.ac.uk/~kisilv/courses/math1055-CourseNotes.pdf
2. [2]. Eckhard HITZER, Introduction to Clifford’s Geometric Algebra, SICE Journal of Control, Measurement, and System Integration, Vol. 4, No. 1, pp. 001–011, January 2011, https://arxiv.org/pdf/1306.1660.pdf
3. Chris J.L. Doran. Geometric Algebra and Application to Mathematical Physics, Sidney Sussex College, University of Cambridge. February 1994, pages 4-6.
4. [3]. K. F. Riley, M. P. Hobson and S. J. Bence, Mathematical Methods for Physics and Engineering, Cambridge University Press, isbn-13 978-0-511-16842-0, p. 384. http://www.astrosen.unam.mx/~aceves/Metodos/ebooks/riley_hobson_bence.pdf
5. [4]. Dan Sloughter, Mathematics 39: Lecture 27 Simply and Multiply Connected Domains, Furman University, 23 April 2008, http://math.furman.edu/~dcs/courses/math39/lectures-08/lecture-27.pdf
6. [5]. http://people.math.carleton.ca/~ckfong/S32.pdf ;
7. https://uregina.ca/~kozdron/Teaching/Regina/312Fall12/Handouts/312_lecture_notes_F12_Part2.pdf
8. [6]. Corti, Alessandro. "An Introduction to Mixed Hodge Theory: A Lecture at LSGNT" (PDF)